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assumptions are discussed.   

 

Keywords: treatment effects, dose-response function, continuous treatment 

  

 

JEL classification: C21, C87, D04 

 

 

25 January 2016  



2 

 

1. Introduction 

In many socio-economic contexts, policy interventions take the form of a continuous 

exposure to a certain type of treatment. In public policies to support business R&D, for 

instance, companies are not only selected for treatment, but also awarded a different 

amount of support. Likewise, individuals getting a grant to set-up a new business, or to 

escape some poverty threshold are typical examples in which the amount of support can 

vary by individual, thereby providing ground for a different response to policy.  

Therefore, from a program evaluation perspective, what is relevant in many 

settings is not only the binary treatment status, but also the level of exposure (or “dose”) 

provided by a public agency. This is in tune with the language of epidemiology, where 

dose-response functions are usually estimated in order to check patients’ resilience to 

different levels of drug administration (Robertson et al., 1994; Royston and Sauerbrei, 

2008).    

This paper presents an original econometric model for estimating a dose-

response function through a regression approach when: (i) treatment is continuous, (ii) 

individuals may react heterogeneously to observable confounders, and (iii) selection-

into-treatment may be potentially endogenous. 

To fix ideas, consider a policy program where the treatment is not randomly 

assigned (i.e., assigned according to some “structural” rule), and where – after setting 

who is treated and who is not – the program provides a different “level” or “exposure” 

to treatment ranging from 0 (no treatment) to 100 (maximum treatment level). Two 

groups of units are thus formed: (i) untreated, whose level of treatment (or dose) is zero, 

and (ii) treated, whose level of treatment is greater than zero.  
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We are interested in estimating the causal effect of the treatment variable t on an 

outcome y based on the observed sample, by assuming that treated and untreated units 

may respond differently both to specific observable confounders (that we collect in a 

row vector x), and to the “intensity” of the treatment t. We wish to estimate a dose-

response function of y on t, either when the treatment is assumed to be exogenous (i.e., 

selection-into-treatment depends only on observable-to-analyst factors) or endogenous 

(i.e., selection-into-treatment depends both on observable and unobservable-to-analyst 

factors).   

 In this model, the dose-response function is shown to be equal to the “Average 

Treatment Effect, given the level of treatment t” (i.e. ATE(t)). But also other causal 

parameters of interest, such as the unconditional Average Treatment Effect (ATE), the 

Average Treatment Effect on Treated (ATET), the Average Treatment Effect on Non-

Treated (ATENT) are estimated, along with these effects conditional on the vector (x; 

t). 

Compared with similar models - and in particular the one proposed by Hirano 

and Imbens (2004) implemented in Stata by Bia and Mattei (2008)1 - this model does 

not need a full normality assumption, and it is well-suited when many individuals have 

a zero-level of treatment (the so-called “spike at zero”). Additionally, it may account for 

treatment endogeneity by exploiting an Instrumental-Variables (IV) estimation in a 

continuous treatment context (provided that good instruments are available).  

When many units are not exposed to treatment, the distribution of t has a “spike” 

or non-nil probability mass at zero, i.e. Pr(t=0)>0. This means that assuming that the 

                                                 
1 See also Bia et al. (2014) generalizing the Hirano-Imbens (2004) model by allowing for a nonparametric 

estimation of the Dose-Response Function. 
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distribution of t|x comes from a normal (or mixtures of normal) distribution, as assumed 

in the Generalized Propensity Score (GPS) proposed by Hirano and Imbens, is 

untenable, as in the presence of a spike at zero this distribution is clearly discontinuous 

and thus non normal. Recently, however, Guardabascio and Ventura (2014) have 

proposed a generalization of the Hirano and Imbens model extending the GPS approach 

to the case of a non-normal continuous treatment variable. They consider a set of 

alternative distributions (binomial, poisson, gamma, inverse-gaussian, etc.) derived 

from the exponential family distribution. Although rich in its scope, such a model is still 

unsuited to incorporate zero-treatment and potential treatment endogeneity. The present 

paper tries to overcome both these limitations.     

Within the epidemiological literature, Royston et al. (2010) have proposed a 

dose-response model for continuous exposures with a spike at zero based on fractional 

polynomials. For fractional polynomials functions of t to be defined at t=0, the authors 

shift the origin of t by adding a small constant, c, before analysis. They take c as the 

smallest difference between successive observed positive values of t, although other 

choices are suggested. The authors propose a model for the response variable y having a 

jump in zero with y equal to a constant β in t=0 and to a fractional polynomial of t+c in 

t>0. They estimate this model in a single regression by adding an indicator variable z 

(taking value one if t=0 and zero if t>0) as additional predictor. In this way they are able 

to estimate the response at t=0 (i.e., recovering a consistent estimation of β) by 

exploiting a standard regression model. 

Differently from Royston et al., our model is embedded into the potential 

outcome setting, the typical framework of counterfactual modeling, and it solves the 



5 

 

zero-inflation problem by directly modeling the potential outcome in t=0. In this way, 

we avoid ad hoc assumptions, as that for choosing a reliable constant c.  

Differently from Hirano and Imbens, we do not need to specify a generalized 

propensity score, as we work within a control-function model2. Moreover, we are able 

to take into account both zero-inflation at t=0 and treatment endogeneity under 

reasonable assumptions. More specifically, we model the dose-response function as 

approximated by a third degree polynomial and both OLS and IV estimation is 

considered. IV is based on a Heckman bivariate selection (also known as type-2 tobit) 

model for w (the yes/no decision to treat a given unit) and t (the level of the treatment 

provided) in the first step, and a two-stage least squares (2SLS) estimation for the 

outcome (y) equation in the second step.  

The paper presents two illustrative applications of the proposed model to real 

datasets. The first application performs the OLS approach assuming treatment 

                                                 
2 As Wooldridge (2010, p. 924-925) points out, in a control-function regression setting one cannot do 

better than using the entire set of available covariates as controls instead of the propensity score as single 

control. Using the propensity score as the only regression control induces in fact two additional problems: 

(1) the propensity score is a rough representation of x and is “estimated”, thus subject to sampling error; 

this induces some noise, generally leading to larger estimates’ standard errors (i.e., lower precision). (2) If 

the actual data generating process of the propensity score does not follow the probit/logit form, one runs 

the risk to insert into the regression a variable affected by measurement error, thus leading to inconsistent 

OLS estimates of the treatment effects. As a conclusion, one does not have any plausible reason to prefer 

the use of the propensity score instead of the entire set of covariates within a regression setting. 

Differently, if one uses Matching instead of a regression approach, then the use of the propensity score 

becomes necessary to help the researcher to overcome the so-called “dimensionality problem” 

(Rosenbaum and Rubin, 1983; Dehejia and Wahba, 2002), although further complications can arise also 

in this case (Abadie and Imbens, 2012).  
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(conditional) exogeneity; the second application applies the IV procedure assuming 

treatment endogeneity. In the first case, we assess the effect of public R&D support on 

business R&D outlay. We will show how our model can be able to look at the pattern of 

the policy effect over treatment intensity, thus going beyond the typical “average effect” 

analysis. This suitably allows us for a better inspection into the causal relation between 

the policy instrument and the policy target. In the second application, we try to estimate 

the impact of job tenure on wages on a dataset of women aged between 14 and 26 years 

by assuming tenure to be endogeneous, thus relying on the proposed IV approach.  

 The paper is organized as follows: section 2, 3 and subsections present the 

model, its assumptions and propositions, as well as the related estimation techniques; 

section 4 sets out the OLS (section 4.1) and the IV (section 4.2) applications on real 

data; section 5, finally, concludes the paper. At the end of the paper, appendix A 

presents the proofs of the propositions.   

  

2. The model 

We set out with some notation. Consider two different and exclusive outcomes: one 

referring to a unit i when she is treated, y1i; and one referring to the same unit when she 

is untreated, y0i. Define wi as the treatment indicator, taking value 1 for treated and 0 for 

untreated units, and xi = (x1i, x2i,  x3i, ... , xMi)  as a row vector of M exogenous 

observable characteristics (confounders) for unit i = 1, ... , N. Let N be the number of 

units involved in the experiment, N1 be the number of treated units, and N0 the number 

of untreated units with N = N1 + N0. 

Define two distinct functions, g1(xi) and g0(xi), as the unit i’s responses to the 

vector of confounding variables xi when the unit is treated and untreated respectively. 
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Assume µ1 and µ0 to be two scalars, and e1 and e0 two random variables having zero 

unconditional mean and constant variance. Finally, define ti – taking values within the 

continuous range [0;100] – as the continuous-treatment indicator, and h(ti) as a general 

derivable function of ti. In what follows, in order to simplify notation, we’ll get rid of 

the subscript i when defining population quantities and relations. 

Given previous notation, we assume a specific population generating process for 

the two exclusive potential outcomes3.     

 

Assumption 1. Form of the potential outcomes’ population generating process. 

Given the previous definitions, the potential outcomes are modelled in an additive form: 

 

1 1 1 1

0 0 0 0

( ) ( )        1

( )                 0

y g h t e if w

y g e if w

µ

µ

= + + + =


= + + =

x

x
 

 

(1) 

 

where the h(t) function is different from zero only in the treated status:  

 

( ) 0      0

( ) 0      1

h t if w

h t if w

= =


≠ =  

 

(2) 

 

 

Given previous assumption and notation, we can also define the causal parameters of 

interests. 

 

                                                 
3 Such a model is the representation of a treatment random coefficient regression as showed by 

Wooldridge (1997; 2003). See also Wooldridge (2010, Ch. 18). For the sake of simplicity, as we refer to 

the population model, here we avoid to write the subscript i referring to each single unit i’s relationships.  
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Definition 1. By defining the treatment effect as TE = (y1 – y0), we define the causal 

parameters of interest as the population Average Treatment Effects (ATEs) conditional 

on x and t, that is: 

  

1 0

1 0

1 0

ATE( ; ) E( | , )

ATET( ; 0) E( | , 0)

ATENT( ; 0) E( | , 0)

t y y t

t y y t

t y y t

= −

> = − >

= = − =

x x

x x

x x

 

 

(3) 

 

where ATE indicated the average treatment effect, ATET the average treatment effect 

on treated, and ATENT the one on untreated units. By the law of iterated expectation 

(LIE), we know that the population unconditional ATEs are obtained as: 

 

( ; )

( ; 0)

( ; 0)

ATE = E {ATE( ; )}

ATET = E {ATE( ; 0)}

ATENT = E {ATE( ; 0)}

t

t

t

t

t

t

>

=

>

=

x

x

x

x

x

x

 

 

(4) 

 

where E(v){·} identifies the mean operator taken over the support of a generic vector of 

variables v.  

By assuming a linear parametric form for 0( )g = 0x xδ  and 1 1( )g =x xδ  the 

Average Treatment Effect (ATE) conditional on x and t becomes: 

 

1 0 1 0

1 0

1 0 1 0

( ) ( ) ( )     if   0
ATE( ; ) E( | , )  =

( ) ( )                if   0

( )    if   0
  

              if   0

h t t >
t y y t

t =

h t t >

t

µ µ

µ µ

µ
µ

− + − +
= − = 

− + −

+ +
= 

+ =

x δ δ
x x

x δ δ

xδ

xδ

 

 

 

(5) 

 

or also: 
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ATE( , , ) [ ( )] (1 ) [ ]t w w h t wµ µ= ⋅ + + + − ⋅ +x xδ xδ  (6) 

 

where µ=(µ1-µ0) and δ=(δ1-δ0). Thus, we can state this proposition: 

 

Proposition 1. Given previous notation and definitions, the unconditional Average 

Treatment Effect (ATE) related to model (1) is equal to: 

 

0 0 0ATE = ( 1) ( ) ( 0) ( )t t tp w h p wµ µ> > == ⋅ + + + = ⋅ +x δ x δ  

 

where p(·) is a probability, and 0th >  is the average of the response function taken over 

t>0. Appendix A provides the proof. See A1.  

 

Since, by LIE, we have that ATE = p(w=1)·ATET + p(w=0)·ATENT, we obtain 

from the previous formula that:  

 

0 0 0

0 0

0

ATE ( 1)( ) ( 0)( )

ATET

ATENT

µ µ

µ

µ

> > =

> >

=

 = = + + + = +


= + +
 = +

t t t

t t

t

p w h p w

h

x δ x δ

x δ

x δ
 

 

(7) 

 

with 0t=x  and 0t>x  equal to the mean of x in t=0 and over t>0 respectively. By adding 

and subtracting the same expressions, we then obtain that:  
 

 

0 0 0 0 0 0

0 0 0 0 0 0 0 0

ATE( , , ) [ ( ) ( ) ( )] (1 )[ ( )]

[( ) ( ) ( ( ) )] (1 )[( ) ( ) ]

t t t t t t

t t t t t t t t

t w w h t h h w

w h h t h w

µ µ

µ µ
> > > > = =

> > > > > = = =

= + + + + − + + − + + − =

= + + + − + − + − + + −

x xδ x δ x δ xδ x δ x δ

x δ x x δ x δ x x δ
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leading to: 

 

0 0 0 0 0ATE( , , ) [ATET ( ) ( ( ) )] (1 ) [ATENT ( ) ]t t t t tt w w h t h w> > > = == ⋅ + − + − + − ⋅ + −x x x δ x x δ

 

so that: 

 

0 0 0

0 0

ATET( , ) ATE( , , 1) ATET ( ) ( ( ) )

ATE( , ) ATE( , , 0) ATENT ( )

> > >

= =

 = = = + − + −


= = = + −

t t t

t t

t t w h t h

t t w

x x x x δ

x x x x δ
 

 

(8) 

 

where: 

 

0 0

0

ATET

ATENT

µ

µ
> >

=

 = + +


= +

t t

t

hx δ

x δ
 

 

(9) 

 

Given these results, we can define the dose-response function of our model by simply 

averaging ATE(x, t) over x, that is: 

 

Definition 2. Formula of the dose-response function. Given previous definitions and 

assumptions, we define the dose-response function associated to the treatment t as: 

 

0ATE( , ) E {ATE( , , )} [ATET ( ( ) )] (1 ) ATENTtt w t w w h t h w>= = ⋅ + − + − ⋅x x  (10) 

 

or equivalently: 

 

0ATET ( ( ) )    if    0
ATE( )

ATENT                       if    0

th t h t
t

t

> + − >
= 

=
 

 

(11) 
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that is a function of the treatment intensity t.
 
The estimation of equation (11) under 

different identification assumptions is the main purpose of next sections. 

 

3. The regression approach 

In this section we consider the conditions for a consistent estimation of the causal 

parameters defined in (3) and (4) and thus of the dose-response function in (11). What it 

is firstly needed, however, is a consistent estimation of the parameters of the potential 

outcomes in (1) – we call here “basic” parameters – as both ATEs and the dose-

response function are functions of these parameters. In this direction, it is possible to 

state this proposition: 

 

Proposition 2. Baseline random-coefficient regression. Under previous definitions and 

assumptions, and in particular the form of the potential outcomes in model (1), to be 

substituted into Rubin’s potential outcome equation 0 1 0( )i i i i iy y w y y= + − , the 

following random-coefficient regression model can be obtained (Wooldridge, 1997): 

 

0 ATE ( ) ( ( ) )i i i i i i i iy w w w h t hµ η= + ⋅ + + ⋅ − + ⋅ − +0x δ x x δ  

 

(12) 

 

where 0 1 0( )i i i i ie w e eη = + ⋅ − . Appendix A provides the proof. See A2. 

 

The equation sets out in (12), provides the baseline regression for estimating the basic 

parameters (µ0, µ1, δ0, δ1, ATE) and then all the remaining ATEs. Both a semi-

parametric or a parametric approach can be employed as soon as a parametric or a non-

parametric form of the function h(t) is assumed. In both cases, however, in order to get a 

consistent estimation of basic parameters, we need some additional hypotheses. We start 
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by assuming first Unconfoundedness or Conditional Mean Independence (CMI), 

showing that it is sufficient to provide parameters’ consistent estimation. Then we 

remove this assumption and introduce other identifying assumptions. 

 

3.1 Estimation under unconfoundedness 

Put very concisely, unconfoundedness states that conditional on the knowledge of the 

true exogenous confounders x, the condition for randomization is restored, and causal 

parameters become identifiable. In this subsection we set out this assumption in this 

form: 

 

Assumption 2. Unconfoundedness (or CMI). Given the set of random variables {y0i, y1i, 

wi , xi} as defined above, the following equalities hold: 

 

E(yji | wi , ti, xi) = E(yji | xi)    with  j = {0,1} 

 

CMI is a sufficient condition for identifying ATEs and the dose-response function in 

this context. Indeed, this assumption entails that, given the observable variables 

collected in x, both w and t are exogenous in equation (12), so that we can write the 

regression line of the response y simply as: 

 

 

0E( | , , ) ATE ( ) ( ( ) )i i i i i i i i i iy w t w w w h t hµ= + ⋅ + + ⋅ − + ⋅ −0x x δ x x δ  

 

 

(13) 

 

and Ordinary Least Squares (OLS) can be used to retrieve consistent estimation of all 

parameters: 
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Proposition 3. Ordinary Least Squares (OLS) consistency. Under assumption 1 and 2 

(CMI), the error tem of regression (12) has zero mean conditional on (wi, xi, ti), i.e.:  

 

( ) ( )0 1 0E , , E ( ) , , 0i i i i i i i i i i iw t e w e e w tη = + ⋅ − =x x  (14) 

 

thus implying that Eq. (14) is a regression model whose parameters can be consistently 

estimated by OLS. The proof is in Appendix A. See A3. 

 

Once a consistent estimation of the parameters in (13) is obtained, we can 

estimate ATE directly from this regression, and ATET, ATENT and the dose-response 

function by plugging the estimated basic parameters into formula (9) and (10). This is 

possible because these parameters are functions of consistent estimates, and thus 

consistent themselves. Observe that standard errors for ATET and ATENT can be 

correctly obtained via bootstrapping (see Wooldridge, 2010, pp. 911-919). 

In order to complete the identification of ATEs and of the dose-response 

function, we finally assume a parametric form for h(t): 

 

Assumption 3. Given the model in (1), assume a three-degree polynomial form for the 

function h(ti), i.e.: 

2 3
( )i i i ih t at bt ct= + +  (15) 

 

where a, b, and c are parameters to be estimated in regression (13). 
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Given previous assumption, equation (13) becomes: 

 

2 3 2 3

0E( | , , ) ATE [ ] [( ) ( E( ) E( ) E( )]i i i i i i i i i i i i i i iy w t w w w at bt ct a t b t c tµ= + + + − + + + − + +0x x δ x x δ

 

that is: 

2 2

0

3 3

E( | , , ) ATE [ ] [ E( )] [ E( )]

[ E( )]

i i i i i i i i i i i i i i

i i i

y w t w w a t t w b t t w

c t t w

µ= + + + − + − + − +

+ −
0x x δ x x δ

 (16) 

 

Under CMI, an OLS estimation of equation (16) produces consistent estimates of the 

parameters, we indicate as 
0

ˆˆ ˆˆˆ ˆ ˆ, , ATE, , , , .a b cµ
0

δ δ With these parameters at hand, we can 

finally consistently estimate the dose-response function as:  

 

� � �2 2 3 3

1 1 1

1 1 1ˆˆ ˆATE( ) [ATET ( ) ( ) ( )] (1 )ATENT
N N N

i i i i i i i

i i i

t w a t t b t t c t t w
N N N= = =

= + − + − + − + −∑ ∑ ∑  

 

(17) 

 

where: 

� �
0ATET( ) ATE( )

ii i tt t >=  

 

A simple plot of the curve � 0ATE( )
ii tt > over the support of t returns the pattern of the 

dose-response function. Moreover, for each level of the dose t, it is also possible to 

calculate the α-confidence interval around the dose-response curve.  
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Proposition 4. Analytical standard error for the dose-response function. By defining 

T1=t-E(t), T2=t2-E(t2) and T3= t3-E(t3), the standard error of the dose-response function is 

equal to4: 

 

{ }1/ 2
2 2 2 2 2 2

1 2 3 1 2 , 1 3 , 2 3 ,
ATE( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2 2a b c a b a c b c
t

T T T T T T T T Tσ σ σ σ σ σ σ∧ = + + + + +  
 

(18) 

 

Proof in Appendix A. See A4. 

This implies that the α-confidence interval of ˆATE( )t for each t is given by: 

 

{ }/ 2
ATE( )

ˆ ˆ ATE( )
t

t Zα σ ∧± ⋅  

 

that can be usefully plotted along the dose-response curve for visually detecting the 

statistical significance of the treatment effect along the support of the dose t.  

 

3.2 Estimation under treatment endogeneity 

When w (and thus t) are endogenous the CMI assumption no longer holds, and the OLS 

estimate of regression (16) becomes biased. This occurs because the orthogonality 

condition implied by equation (14) fails, so that:  

 

( ) ( )0 1 0E , , E ( ) , , 0i i i i i i i i i i iw t e w e e w tη = + ⋅ − ≠x x  (19) 

 

                                                 
4 This comes from the variance/covariance properties where T1 T2 T3 are taken as constant and a, b and c 

as random variables. 
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where it is clear that inequality depends on the endogeneity of wi (and ti), being xi 

assumed to be pre-determined. In such a case, however, an Instrumental-Variables (IV) 

estimation may be implemented to restore consistency, provided that e1=e0 

(Wooldridge, 2010, pp. 942-943)5. Such condition excludes the presence of 

unobservable heterogeneity, while preserving observable heterogeneity. In order to 

implement IV in such a setting, we first need to express the previous model in a semi-

structural form, that is: 

 

Assumption 4. Semi-structural form of model (1). Given Assumption 1, and the 

potential outcome model, we can write that6: 

                                                 
5 Assuming e1=e0 leads to IV consistency without the need to introduce further distributional assumptions 

on the error terms as in the traditional Heckit model. Given instruments z, an alternative IV identification 

assumption could be E(w(e1 - e0) | x, z) = E(e1 - e0 | x, z) which is, however, strongly ad hoc (Wooldridge, 

2010, pp. 944). 

 
6 It is worth stressing that our model assumes that the (public) agency stepwise decides either: (i) who is 

entitled to receive the treatment, and (ii) the level of the treatment”. It means that this model does not 

account for the dose to be agents’ choice. Furthermore, it is assumed that the level of the received 

treatment and the level of the dose actually employed by units are the same. When the level of treatment 

actually exploited is however lower than the treatment actually received, thereby implying that dose 

becomes a strategic variable for units, then the observed dose becomes “endogenous” (as “measured with 

error”). In this case a proper IV procedure can restore consistent treatment effects’ estimation, despite the 

presence of this sort of “imperfect compliance” with treatment. For an interesting discussion on this issue, 

see the paper by Angrist (2006).  

. 
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1     if    0
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(20) 

 

where: T1i=ti-E(ti), T2i=ti
2-E(ti

2) and T3i = ti
3-E(ti

3); wi
* represent the latent unobservable 

counterpart of the binary variable wi (for instance, wi
* might be seen as the net benefit - 

cost minus return - of an agency choosing to finance specific subjects); ti is fully 

observed only when wi=1 (and ti= it′ ), otherwise it is supposed to be unobserved 

(although put equal to zero). By making explicit in linear form the reduced-form 

equations for wi
* and ,t ′  the previous model may be re-written as follows: 

 

0 1 2 3

*

,

,

ATE [ ]

                                                                      

                                                     

i i i i i i i i i i i i

i w i w wi

i t i t ti

y w w w T bw T cw T

w

t

µ η

ε

ε

= + + + − + + + +

= +

′ = +

0x δ x x δ

x β

x β                   







 

(21.1) 
 

(21.2) 
 

(21.3) 

 

where: xw,i and xt,i are two sets of exogenous regressors, and εwi, εti and ηi are error terms 

supposed to be freely correlated one another with zero unconditional means. Equation 

(21.2) – the selection equation – defines the regression explaining the net benefit 

indicator w*. The vector of covariates xw,i are the selection criteria used, for instance, by 

an agency to set the treated and untreated group. In turn, equation (21.3) – the 

treatment-level equation – defines how the level of unit treatment is decided, and it 

regards only units that were considered eligible for treatment. The vector of covariates 

xt,i are those exogenous variables thought of as determining the treatment level.    
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In equation (21.1), wi and T1i, T2i and T3i are endogenous, being these latter ones 

functions of the endogenous t. This entails that the problem in this system is with 

parameters’ identification. In general, with two endogenous variables, the identification 

of linear systems of equations would require the availability of at least two instrumental 

variables, one for w and one for t (i.e., just-identified setting).  

 

Assumption 5. Identification of system (21). Given system (21), we assume to know 

two exogenous variable zw,i and zt,i supposed to be: (i) correlated with wi
* and it′ , 

respectively; (ii) uncorrelated with εwi, εti and ηi. As such, zw,i and zt,i behave as 

instrumental variables.    

Assumption 5 leads naturally to the following specification of the exogenous 

confounders in system (21):  

xw,i = [xi; zw,i] 
 

xt,i = [xi; zt,i] 

 

(22) 

 

so that a full specified model - with all the equations depending on the same exogenous 

xi - is considered, where zw,i and zt,i are the instrumental variables directly correlated 

with the selection and the level of treatment, but directly uncorrelated with the level of 

the outcome. 

Nevertheless, since equation (21.2) is a latent regression model, ultimately 

estimated through a logit or probit regression, parameters of system (21) may be 

identified just by means of one instrumental variable, and in particular by the use of zt,i. 

This depends on the non-linearity of the logit or probit regression, producing orthogonal 

projections (i.e., predictions) that are not perfectly collinear with xi in equation (21.1). 

However, relying on two (instead of one) instruments increases the precision of 
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parameters’ estimation in (21.1), as the degree of collinearity is reduced and the 

variance of IV estimators shrinks accordingly.   

    Practical estimation of system (21) starts from recognizing that the two last 

equations of system (21) – i.e., (21.2)-(21.3) – represents a bivariate sample-selection 

model or type-2 tobit model (Heckman, 1979). Generally, such a model is estimated by 

invoking some distributive assumptions regarding the error terms. 

 

Assumption 6. We assume that the error terms in (21.2) and (21.3) are jointly normally 

distributed and homoskedastic: 

 

2

10
;

0

wi wt

wt tti

N
ε σ

σ σε
     
     
      

∼  

 

where the normalization σw=1 is used because only the sign of wi
* is observed.    

 

Given this additional assumption, all the ingredients to provide a procedure for 

estimating system (21) consistently are available. 

 

Proposition 5. Consistent estimation of system (21). Under assumption 4, 5 and 6, and 

by assuming (22) to hold, the following procedure provides a consistent estimation of 

the parameters of system (21), and in particular of equation (21.1): 

 

1. First: estimate equations (10.2)-(10.3) jointly by a type-2 tobit model. 
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Comment. As said, this can be achieved by a Heckman two-step procedure (Heckman, 

1979). The Heckman two-step procedure performs: a probit of wi on xw,i in the first step 

using only the N1 selected observations; and an OLS regression of 
it′  on xt,i, augmented 

by the Mills’ ratio obtained from the probit in the second step, using all the N 

observations since predictions are made also for the censored data. However, because of 

the errors’ joint normality, a maximum-likelihood (ML) estimation can be also 

employed; ML leads to more efficient estimates of βw and βt.  

 

2. Second: compute the predicted values of wi (i.e. ˆ
wip ) and ti (i.e. ît ) from the 

previous type-2 tobit estimation, and then perform a two-stage least squares 

(2SLS) for equation (21.1) using as instruments the following exogenous 

variables (
1 2 3
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, , [ ], , ,i wi wi i wi i wi i wi ip p p T p T p T−x x x ). 

 

Comment. This 2SLS approach provides consistent estimation of the basic coefficients 

0,  ,  ATE, ,  ,  ,  a b cµ 0δ δ  (Wooldridge, 2010, pp. 937-951)7.   

 

3. Third: once previous procedure estimates consistently the basic parameters in 

system (21), the causal parameters of interest - ATEs and the dose-response 

function - can be consistently estimated by the same plug-in approach used for 

the OLS case. 

 

Proof in Appendix A. See A5.  

                                                 
7 Observe that instruments used in the 2SLS are based on the orthogonal projection of wi and ti on the 

vector space generated by all the exogenous variables of system (21). 
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The question of identification of parameters in the system of equations (21) using the 

previous procedure is a bit trickier than it may appear at first glance. As suggested by 

Wooldridge (2002, p. 613), one can be selective in establishing which subset of 

variables contained in the vector x of equation (21.1) has to interact with the treatment 

w in the fourth term of the RHS of (21.1). Suppose to call such subset of the x-variables 

as xhetero. In the discussion on identification presented so far, we assumed that: 

 

dim(xhetero) = dim(x) 

 

In this case, identification requires – as argued –  at least one instrument, and in 

particular the instrument zt,i. As said, this depends on the nonlinearity of the probit/logit 

model, so that the instrument zw,i turns out to be unnecessary for identification –

although its use could increase estimation efficiency. This follows exactly the same 

argument one typically invokes in the standard Heckman selection model (Heckman, 

(1979), where instruments are not necessary for identifying ATEs because of the first-

step probit estimation. As a conclusion, previous procedure can identify all the causal 

parameters (including the dose-response function) by means of just one instrument, zt,i.    

Nonetheless, assume instead to have:   

 

dim(xhetero) < dim(x) 

 

i.e., the set of variables included into xhetero contains just “some” of the variables in x 

(not all). In this case, by construction, one does not need any instrument to identify the 

proposed model. This depends on the fact that, by restricting the number of variables 
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supposed to interact with w (i.e., having heterogeneous response) in the two states 

(treated vs. untreated), we introduce “exclusion restrictions” which reduce the number 

of endogenous variables (as the interactions are in turn endogenous, being them 

function of w which is supposed to be endogenous by assumption), thus “helping” to 

reach identification.  

This means that, by just excluding one of the variables in x from the set xhetero, 

we can identify the model with no instruments. This is appealing, but has some costs in 

terms of reduced estimates’ efficiency. However, since some of the variables x are 

probably not subject to observable heterogeneity, the IV model can identify ATEs 

without using instruments, as the standard Heckman selection model does. Of course, 

part of the identification is based on the type-2 tobit model assumed in the first step, 

which relies on the bivariate normality of the errors. We will come back to this issue in 

section 4.28. 

 

 

 

                                                 
8 It is not clear at this stage which is the link between the definition of the Local Average Treatment 

Effect (LATE) as proposed by Imbens and Angrist (1994), and the IV approach as proposed in this paper. 

The problem is that LATE identifies the casual effect of w on y in a setting where the instrument z is 

binary. Although extension to the case in which w can be multi-valued and more than one binary z is 

available have been provided (Angrist and Pischke, 2008, 173-186), no comparable findings are found so 

far in the literature for the case in which both the treatment and the instrument take values on a 

continuous support. The use of instrumental variables under heterogeneous effects will however identify a 

causal effect for a subpopulation, and not for the (complete) population. This is irrespective of the precise 

characterization of the subpopulation (e.g., compliers in the binary setting). This certainly represents a 

trade-off when moving to the use of IVs, when there is effect heterogeneity based on unobservables. 
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3.3 Estimation of comparative dose-response functions 

Besides the dose-response function and the other causal parameters of interest as 

defined above, the previous model allows also for calculating the average comparative 

response at different level of treatment (as in Hirano and Imbens, 2004). This quantity 

takes this formula:  

 

ATE( , ) E[ ( ) ( )]∆ = +∆ −t y t y t  (23) 

 

Equation (23) identifies the average treatment effect between two states (or levels of 

treatment): t and t + ∆ . Given a level of ∆=∆ , we can get a particular ATE( , )t ∆  that 

can be seen as the “treatment function at ∆”. Observe that the standard ATE(t) is 

obtained from (23) when t=0. 

How can we get an estimation of ATE( , )t ∆ ? We can observe that in our 

framework the “potential outcome” at different t, i.e. E[y(t)], is: 

 

, 1 , 1 0

0

E( | ) E {E( | , , )} E { ATE [ ] [ ( ) ]}

ATE ( ( ) )

w wy t y w t w w w h t h

h t h

µ

µ
= == = + + + − + − =

+ + + −

x x 0

0

x xδ x x δ

xδ
 (24) 

 

Therefore: 

0 0E( | ) E( | ) [ ATE ( ( ) )] [ ATE ( ( ) )]

( ) ( )

y t y t h t h h t h

h t h t

µ µ+ ∆ − = + + + + ∆ − − + + + − =

+ ∆ −
0 0xδ xδ

 (25) 

 

that is: 
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ATE( , ) E[ ( ) ( )]t y t y t∆ = +∆ − = ( ) ( )h t h t+ ∆ − =[
2 3( ) ( ) ( )a t b t c t+∆ + +∆ + +∆ ]-      

2 3[ ]at bt ct+ +  
(26) 

 

and an estimation is thus given by: 

 

� 2 3 2 3ˆ ˆˆ ˆ ˆ ˆATE( , ) ( ) ( ) ( ) [ ]t a t b t c t at bt ct∆ = +∆ + +∆ + +∆ − + +  (27) 

 

Given a predefined ∆=∆ , for each level of t we can bootstrap �ATE( , )t ∆  over ˆˆ ˆ( , , )a b c  

to get its standard errors and statistical significance at various level of the treatment 

intensity t.  

 

4. Applications9 

4.1 Application 1: the impact of public support on business R&D   

In this section, we present an application of our model on real data. We aim at 

estimating the effect of public research and development (R&D) support on company 

R&D performance. The level of the public support to R&D, in fact, is a typical 

continuous treatment variable showing a large number of zeros for non supported 

companies and a positive value for all supported units. As dataset, we employ the 8th, 9th 

and 10th Unicredit surveys collecting a large body of information on various 

characteristics and activities of a sample of Italian companies, including innovation and 

R&D (public and private) financing for around 5,000 companies in each wave. The 

timing is: 1998-2000 for the 8th survey, 2001-2003 for the 9th survey, and 2004-2006 for 

                                                 
9 A Stata implementation of the model presented in previous sections can be found in Cerulli (2015). 
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the 10th one. All surveys are built by stratifying on sector, size and location, thus being 

representative of Italian manufacturing companies with more than 10 employees.  

The three surveys are then combined in a unique repeated cross-section of 

14,106 companies, since building a longitudinal dataset (or panel) would have caused a 

sharp reduction in the sample size (only 451 companies appear in all the three surveys). 

Furthermore, since only relatively few businesses present information on R&D 

financing, being this section of the questionnaires very rich of missing values, 

exploiting a repeated cross-section guarantees a larger (final) sample size. The final 

dataset is then merged with companies’ balance sheet data coming from the AIDA 

archive10.   

 Table 1 reports the model’s specification for this application. Here a description 

of the outcomes, binary treatment, treatment level (or dose), and control covariates is 

compactly reported. This specification of the outcome equation comes from a widely 

accepted view of the main drivers of company R&D performance as maintained in the 

R&D policy evaluation literature (David et al. 2000; Cerulli and Potì, 2012).  

 In each survey, variables are calculated through a three-year average so to have 

common time consistency. Therefore, given the time structure of the Unicredit surveys, 

we perform a three-period analysis with each period made of an average over three 

years. In sum, in this application we cover nine years, from 1998 to 2006. 

                                                 
10 AIDA is a commercial database on Italian firms maintained by Bureau van Dijk. It gives balance-sheet, 

income statement and other information, such as location, sector, year of incorporation, ownership and 

equity participations in other firms, covering a 10-year time window. More information on this dataset are 

available at this URL: http://www.bvdinfo.com/it-it/our-products/company-information/national-

products/aida. 
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 An usual problem in the impact evaluation of company R&D public support is 

the difficulty in singling out good candidates as instrumental variables. Our application 

shares this limitation with the previous literature. Therefore, in this exercise we only 

apply the OLS control-function approach, by leaving the IV approach to be used in the 

application presented in the next section. 

 Before commenting the results, it seems firstly useful to inspect into the dataset 

we obtain after combining and merging these different data sources. Our regression’s 

specification, unfortunately, leads to a huge drop of observations. Indeed, due to a great 

number of crossing missing values and after deleting influential observations, we are 

left with a sample of 932 observations. Nevertheless, Table 2 shows that the 

representativeness of the population is quite well kept in the sample both in terms of 

sector and location. As for the size, on the contrary, we have a higher presence of 

companies having between 51-250 employees and a lower presence of smaller firms. 

This might generate a little bias towards less financial constrained companies, thus 

probably driving down the average effect of the R&D support considered here.  

Another important descriptive statistics is the distribution of the R&D publicly 

supported, measured as the share of total firm R&D expenditure. Table 3 shows that in 

our sample this average share is around 40% with a median equal to 30%. It means that, 

among the supported companies, a large quota of R&D is generally covered by public 

financing. 

 

<TABLE 1 - HERE> 

 

<TABLE 2 - HERE> 
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The number of supported companies is rather small, 235 in the final sample: this is due 

to the fact that very few companies respond to the financing section of the Unicredit 

questionnaires. Nevertheless, at least in Italy, Unicredit surveys are the only freely 

available datasets providing the level of the R&D public support at firm level (Cerulli 

and Potì, 2012). 

 

<TABLE 3 - HERE> 

 

Given this picture, we can assess the impact of public R&D support on the four 

outcome measures reported in Table 1. We have to observe, however, that the most 

relevant outcome for our purposes is the level of “net R&D expenditure” (R&D 

expenditure minus the subsidy received) as it returns the actual amount of additional 

R&D that a company has been able to perform. Nevertheless, also the effect on “gross” 

(or “total”) R&D outlay will be estimated. Moreover, as scale effects can be relevant 

even if controlling for firm size as we do here, we calculate also the effect on both gross 

and net R&D expenditure either on turnover and per employee. Results are set out in 

Table 4 and 5, for all variables, although it seems more interesting the graphical pattern 

of the estimated dose-response function and of the distributions of ATE(x,t), ATET(x,t) 

and ATENT(x,t). These are visible in Figure 1.    

 

<TABLE 4 - HERE> 

 

<TABLE 5 - HERE> 
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Results in Table 4 show that public support to both gross and net R&D is effective at 

least at the 5% significant level. Quite surprisingly, the effect on net R&D is a bit 

higher, around 325 thousand euro. Other significant predictors are size (measured as 

number of employees, with a positive sign), cash-flow (although with a negative sign) 

and belonging to a group of firms (with a positive value). In terms of coefficients’ 

magnitude, measured by standardized coefficients, Table 5 reveals that size is the most 

relevant predictor followed by the Treatment having however a coefficient three times 

lower.  

In the R&D literature, it is well recognized that company size has generally a 

great impact on R&D spending; thus, having found a positive and significant effect of 

R&D support even by controlling for company size, suggests that public financing has 

been decisively effective in fostering the level of both net and gross R&D expenditure. 

Nevertheless, when considering both gross and net R&D per capita and R&D intensity 

(obtained through dividing by firm turnover) results show no significant (although 

positive) effect of R&D public support. This might indicate that the additional level of 

R&D induced by the public support has been not comparatively higher than the growth 

in company employees and turnover. As such, previous conclusions on support’s 

effectiveness might be carefully reconsidered, as scale-neutral R&D performance 

indicators do not show such a result. Anyway, if the level of R&D is the main policy 

objective, moderately optimistic conclusions on the achievements of the policy thus 

evaluated can be drawn. 

 Figure 1 shows the kernel estimation of the distribution of ATE(x,t), ATET(x,t) 

and ATENT(x,t), and the plot of the dose-response function with 95% confidence 

intervals. As for the distributions, it is immediate to see that the net R&D performance 
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shows, in each graph, a much more disperse distribution for ATET(x,t) compared with 

ATE(x,t) and ATENT(x,t). Moreover, ATET(x,t) appears much more concentrated on 

lower values, thus indicating that the effect on treated units seems surprisingly not only 

less regular, but also weaker for treated than for untreated units. This might question the 

selection process adopted by the public agency (although, on average, differences are 

not strong).  

 More interesting for the aim of this paper is the pattern of the dose-response 

functions. As for both gross and net R&D, it is easy to see that the dose-response 

function has a negative slope with significant confidence intervals lying in between 

(0;20] for gross R&D spending, and in between (0;15] for net R&D. This result is 

striking, as it says that the overall positive effect of the policy found in the previous 

regression results (Table 4 and 5) is mainly driven by those supported companies 

getting a comparatively lower share of R&D covered by public support (no more than 

around 20% or 15% for gross and net R&D respectively). A similar finding has been 

found in Marino and Parrotta (2010), using the Hirano and Imbens’ approach on 

company R&D support in Denmark. No effect seems to emerge for higher shares of 

publicly financed R&D, as the dose-response functions decrease slowly with very large 

confidence intervals. Interestingly, company net R&D expenditure becomes negative 

around a threshold of 40%: this finding might have remarkable policy implications.   

 Results on R&D per capita and R&D intensity seem similar and in tune with 

previous regression output: confidence intervals are almost uniformly large, with the 

pattern of net R&D appearing decisively more decreasing than that of gross R&D.    

 

<FIGURE 1 - HERE> 
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4.2 Application 2: the impact of job tenure on wages 

In this section we provide an illustrative example on how applying to real data the IV 

approach developed in section 3.2. We consider the dataset “nlswork” coming from the 

US National Longitudinal Survey (NLS) reporting job and personal information on 

young women aged between 14 and 26, based on a series of interviews carried out from 

1968 to 198811. This dataset contains information on women’s labor conditions such as 

wages, educational level, race, marital status, etc.. We are interested in estimating the 

impact of the variable “tenure” (job tenure) on “wage” (measured as the logarithm of 

wages in dollars per hour) conditional on a series of covariates (i.e., observable 

confounders). The variable “tenure” is a good candidate to be exploited as continuous-

treatment (i.e., dose) as it presents a spike at zero with 1,248 out of 28,534 observations 

(a share of around 4,5 %) reporting a level of job tenure equal to zero (with 433 

observations presenting missing value). The description of the dataset is illustrated in 

Table 6. 

In regressing wage on tenure (and controls), a possible estimation problem might 

arise if one assumes that unobservable shocks affecting a woman’s wage also affect her 

tenure, thus making job tenure endogenous. In such a case, relying on an OLS control-

function regression – as we did in the application of section 4.1 – might lead to biased 

results. In order to recover consistent estimates, we can however exploit the IV 

procedure presented in section 3.2.  

This application is based on that illustrated in StataCorp (2013, p. 936) where a 

specific specification of the model is used to fit a standard IV regression. This 

application assumes as control variables: woman’s age and age squared, birth year, and 

                                                 
11 The dataset can be freely downloadable at this URL: http://www.stata-press.com/data/r13/nlswork.dta. 
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level of education. As for the instruments, woman’s union status (“union”), and a 

dummy indicating whether she is married with a spouse present at home (“msp”) are 

used. Indeed, the event to present a union membership, and that of living with a spouse 

present at home are thought to be reasonably correlated with job tenure, while should 

not have a direct effect on wages. In the StataCorp’s example, the IV estimate of ATE 

results in a magnitude which is 2.83 times that of the OLS. We take such a value as a 

heuristic benchmark to assess the reliability of our IV approach.  

 

<TABLE 6 – ABOUT HERE> 

 

Before fitting this model and thus drawing the dose-response function, however, we 

first generate the binary treatment variable we call “treatment”, and the continuous-

treatment (i.e., the dose) ranging from 0 and 100 we call here “tenure2”. This way, we 

have all the ingredients to apply our IV procedure. We start with estimating the model 

by OLS, and then by IV when we assume treatment endogeneity.  

According to our results, OLS estimates return an ATE equal to 0.09 which is 

highly significant with a standard error equal to 0.013, t-test of 6.97, sample size of 

28,099, and R-squared of 0.30. Our IV approach returns instead a non-significant 

estimate of ATE of around 2.38 which is around 26 times larger than the OLS estimate. 

It is an unreliable result which deserves further inspection.  We can in fact show that 

such overestimation and very low precision of our IV estimate of ATE can be explained 

by a rather strong non-normality of the “tenure2” variable, whose empirical distribution 

is reported in panel (a) of Figure 2. As clearly visible, the distribution of “tenure2” 
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appears to be closer to a Power Law (as, for instance, a Pareto) distribution, which is 

highly skewed and thus well far from having a Normal shape. 

 

<FIGURE 2 – ABOUT HERE> 

 

In order to fix such problem, a possible solution might be that of using a logarithmic 

transformation of “tenure2” which should reduce skewness. We call the variable thus 

obtained “tenure3”, whose distribution is reported in panel (b) of Figure 2. By excluding 

the evident high frequency (or “spike”) at zero, the rest of this distribution is still far 

from being Normal, and the IV estimation of ATE thus obtained results in a very 

imprecise value which is around 33 times that of the (significant) OLS estimation. 

Hence, even in this case, our IV procedure returns unreliable estimates of the average 

treatment effect. As said, we suspect it depends on a weak compliance with the 

normality assumption of the logarithm of job tenure. Therefore, in order to see what 

happens if we force our data to more tightly comply with the Normality assumption, we 

truncate the distribution of “tenure3” by deleting all the observations between zero (not 

included) and a dose level of 42. This way, we eliminate its non-Normal part. This 

truncation results in a new distribution of the log of job tenure visible in panel (c) of 

Figure 2. This distribution is evidently closer to a Normal one except, of course, for the 

truncation on its left tail. Although a perfect compliance with the Normal distribution is 

not fully achieved also in this case, IV estimates become now 12 times larger than OLS 

estimates, thus considerably improving the reliability of our IV procedure. This finding 

is sufficient to prove that, unlike our OLS approach, the IV procedure proposed in 
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section 3.2 seems to be quite sensitive to departure from Normality. A series of Monte 

Carlo experiments conducted on this model confirm such finding. 

Taking the distribution of the truncated “tenure3” as the most reliable variable, 

Tables 7 and 8 show, respectively, the results from the first and the second step of our 

IV procedure. The still large imprecision of the IV estimator of the treatment effect 

(with magnitude 1.66, and standard error 3.19), might be however due not only to the 

weak Normality of the truncated “tenure3”, but also to the weak nature of the 

instrument “mps” which seems poorly related - in a multivariate sense – to the 

endogenous treatment.   

 

<TABLE 7 – ABOUT HERE> 

 

<TABLE 8 – ABOUT HERE> 

 

Although our IV point estimation is imprecisely estimated, the shape of the dose-

response function seems reasonably reliable. Figure 3 illustrates the pattern of the dose-

response function of “job tenure” on “wage” when using OLS (panel (a)) and IV (panel 

(b)) with the truncated “tenure3” variable. Both curves clearly show the presence of the 

truncation, and confirm the growing pattern of ATE(t) – i.e., the dose-response curve –  

as a function of the dose (i.e., tenure). As expected, it is also evident the larger 

confidence intervals of IV compared to OLS estimates, which confirms what found 

above for the IV point estimate of ATE.  

 

<FIGURE 3 – ABOUT HERE> 
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  By assuming treatment endogeneity, we can thus conclude that the “true” dose- 

response function of “wages” on “tenure” is probably located somewhere above the 

OLS and below the IV dose-response functions. It is also clear that such relation is an 

increasing one, a fact confirmed also by our IV approach which returns - at least in this 

case - a robust result.      

 

5. Conclusion    

This paper has presented an original econometric model for estimating a dose-response 

function through a regression approach where: (i) treatment is continuous with a spike 

at zero, (ii) individuals may react heterogeneously to observable confounders, and (iii) 

selection-into-treatment may be endogenous. This model tries to overcome some 

limitations of previous counterfactual models with continuous treatment, and in 

particular the one proposed by Hirano and Imbens (2004), by taking into account also 

the presence of untreated units (i.e., by modeling zero-treatment), and the presence of 

potential treatment endogeneity.   

Two estimation procedures have been proposed for this model: one based on 

OLS under Conditional Mean Independence (or CMI), and one based on Instrumental-

variables (IV)  assuming selection endogeneity.  

Two applications to real data have been set out. In the first application, we 

assessed the effect of public R&D support (measured as a share of total company R&D 

expenditure) on business gross and net R&D outlay using the proposed OLS procedure. 

Results seem to shed new light on the relation between public support and its effect on 
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company R&D behavior12. In particular, the proposed model allows to look at the 

pattern of the policy effect over treatment intensity, thus going beyond the typical 

average-effect analysis. Recovering the pattern of the dose-response function, along 

with the plot of its confidence intervals, can be used for a better inspection into the 

causal relation between the policy instrument and the policy target. This is a relative 

advantage of using dose-response models than traditional evaluation approaches.  

The second application has explored the relation between job tenure and wages 

at individual level. For the sake of comparison, by drawing on an existing example 

applying a traditional IV approach, this application confirms an increasing relation 

between job tenure and wages, and shows that, generally speaking, the normality 

assumption of the first-step regression of our IV approach is relevant for results to be 

stable and precise. Providing an IV procedure in the case of an endogenous dose-

response function able to relax the Normality assumption of the fist-step seems thus a 

challenging agenda for next research.  

                                                 
12 In relation to this, see also Cerulli (2010) for an econometric review of the treatment models used in 

this field of study.  
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Appendix A.  

A1. Proof of proposition 1. Formula of ATE.  

Define z and w being two random variables. LIE states that:   

 

E(z) = Ew{Ez{z | w)} (A1.1) 

 

Assume that:  

z = (y1 – y0 | x, t) (A1.2) 

 

and define:   

 

ATE* = E(y1 – y0 | x, t) = E(z) (A1.3) 

 

Now, define: 

 

ATE*(w) = E(z | w) (A1.4) 

 

Using these definitions we have that: 

 

ATE* = E(y1 – y0 | x, t) = E(z) = Ew{E(z | w)} = Ew {ATE*(w)} (A1.5) 

 

Now, ATE*(w) is a random variable with this distribution: 

 

ATE( =1) = ATET          ( =1)
ATE( )=

ATE( =0) = ATENT      1- ( =1)

w pr w
w

w pr w



  

 

(A1.6) 

 

implying that: 
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ATE* = Ew{ATE*(w)} = ATE*(w=1) pr(w=1) + ATE*(w=0) [1 - pr(w=0)]  = 

E(y1 – y0 | x, t>0) pr(w=1) + E(y1 – y0 | x, t=0) [1 - pr(w=0)] = ATE(x,t) 

 

(A1.7) 

 

Finally, by applying LIE again, we get:   

 

ATE = E(ATE*)=Ex,t[ATE(x,t)] (A1.8) 

 

implying that: 

 

ATE( , , ) [ ( )] (1 )[ ]t w w h t wµ µ= + + + − +x xδ xδ
 

(A1.9) 

 

□ 

A2. Proof of proposition 2. Baseline random-coefficient regression.  

Substitute the potential outcomes’ form of model (1) into Rubin’s potential outcome 

equation 0 1 0( )y y w y y= + − , thus getting: 

0 1 0 0 0 0 1 1 1 0 0 0( ) ( ( ) ) [( ( ) ( ) ) ( ( ) )]y y w y y g e w g h t e g eµ µ µ= + − = + + − + + + − + +x x x   

(A2.1) 

 

Then, by collecting the various arguments of this equation, we get that: 

0 1 0 0 1 0 0 1 0( ) ( ) [ ( ) ( )] ( ) ( )y w g w g g w h t e w e eµ µ µ= + ⋅ − + + ⋅ − + ⋅ + + ⋅ −x x x
 

By assuming that 1 1( )g =x xδ  and 0 0( )g =x xδ  as done in the text, and by adding and 

subtracting wxδ  and wh , we finally have that: 

0 1 0 1 0 1 0( ) [ ] ( ) ( )

( ) ( )

y w w w h t e w e e

w w wh wh

µ µ µ= + ⋅ − + + ⋅ − + ⋅ + + ⋅ − +

− + −
0 0xδ xδ xδ

xδ xδ
 

 

(A2.2) 

 

that is: 

0 ATE ( ) ( ( ) )i i i i i i i iy w w w h t hµ η= + ⋅ + + ⋅ − + ⋅ − +0x δ x x δ  (A2.3) 

 

where 0 1 0( )i i i i ie w e eη = + ⋅ − . □  
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A3. Proof of proposition 3. Ordinary Least Squares (OLS) consistency.  

Under assumption 1 and 2 (CMI), the error tem of regression (12) has zero mean 

conditional on (wi, xi, ti), i.e.:  

 

( ) ( )
( ) ( )
( ) ( )

0 1 0

0 1 0

0 1 0

0 1 0

0 1 0

E , , E ( ) , ,

E , , E ( ) , ,

E , , E( ) , ,

E( , , ) E( , , ) E( , , )

E( ) E( ) E( ) 0

i i i i i i i i i i i

i i i i i i i i i i

i i i i i i i i i i

i i i i i i i i i i i i i i

i i i i i i i i

w t e w e e w t

e w t w e e w t

e w t w e e w t

e w t w e w t w e w t

e w e w e

η = + ⋅ − =

+ ⋅ − =

+ ⋅ − =

+ ⋅ − ⋅ =

+ ⋅ − ⋅ =

x x

x x

x x

x x x

x x x

 (A3.1) 

 

The fourth equality comes from CMI; whereas, the last equality derives from the 

assumption of exogeneity of x. □ 

 

A4. Proof of proposition 4. Analytical standard error for the dose-response function. 

Formula (18) comes from the variance/covariance properties, where T1 T2 T3 are taken 

as constant and a, b and c as random variables. Indeed, when w=1, Eq. (17) can be 

written as: 

� �
1 2 3

ˆˆ ˆATE( ) ATETi i i it a T b T c T= + ⋅ + ⋅ + ⋅   

(A4.1) 

 

This implies that: 

�{ } { }
{ } { } { } { }
{ } { }

1 2 3

1 2 3 1 2

1 3 2 3

2 2 2 2 2 2

1 2 3 1 2 , 1 3 , 2 3 ,

ˆˆ ˆATE( )  

ˆ ˆˆ ˆ ˆ2 ;

ˆˆ ˆ ˆ2 ; 2 ;

ˆ ˆ ˆ ˆ ˆ ˆ2 2 2

i i i i

i i i i i

i i i i

i a i b i c i i a b i i a c i i b c

Var t Var a T b T c T

Var a T Var b T Var c T Cov a T b T

Cov a T c T Cov b T c T

T T T T T T T T Tσ σ σ σ σ σ

= ⋅ + ⋅ + ⋅ =

⋅ + ⋅ + ⋅ + ⋅ ⋅ +

⋅ ⋅ + ⋅ ⋅ =

+ + + + +

 

 

 

 

(A4.2) 

 

That is equivalent to Eq. (18). □   
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Proposition 5. Consistent estimation of system (21).  

We show that the IV procedure proposed in the text to tackle w and t endogeneity leads 

to a consistent estimation of the basic parameters in equation (21.1). We show 

consistency for the first step (type-2 tobit), and then for the second step (2SLS) under 

assumptions 4, 5 and 6 and by assuming (22), provided that e1=e0. 

First step consistency. Here, we estimate equations (10.2)-(10.3) jointly by a type-2 

tobit model. As said in the text, a Heckman two-step procedure (Heckman, 1979) 

provides a consistent estimation for such a two-equation system. For the proof, we 

remind directly to the original article. Observe, however, that under errors’ joint 

normality a maximum-likelihood (ML) estimation leads to more efficient estimates. In 

such a specific case, the form of the likelihood function is: 

1* * *

1

{ ( 0)} { ( | 0) ( 0)}i i

N
w w

i i i i

i

L Pr w f t w Pr w
−

=

= ≤ > × >∏  
 

(A5.1) 

 

where the first term represents the contribution when 
*

1 0iw ≤ , since w1i = 0; the second 

term is the contribution in the opposite case, i.e. 
*

1 0iw > . When errors are jointly 

normal, then *( ; )f w t′  is bivariate normal and the conditional density in the second term 

is in turn univariate normal.  

Second step consistency: by definition, the predicted values of w* (i.e. ˆ
wip ) and ti (i.e. ît ) 

from the previous type-2 tobit estimation are the orthogonal projections of these 

variables on the vector space generated by all the exogenous variables of system (21). 

Call this vector space as Γ. As such, ˆ
wip and ît  have three properties: (i) as functions of 

exogenous variables, they are exogenous themselves; (ii) as orthogonal projections, they 

provide the best representation of  wi
* and ti on Γ; (iii) they are correlated with wi

* and ti, 
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respectively. Given these properties, ˆ
wip and ît  are good candidates to be instruments 

when wi and ti are endogenous in equation (21.1). 

At this point, one would be tempted to replace w and t with ˆ
wip and ît  directly 

into equation (21.1), and then perform an OLS regression of this equation: this would be 

a correct IV procedure leading to consistent estimation only if the type-2 tobit model is 

“correctly” specified.  

When the type-2 tobit is not correctly specified, either ˆ
wip or ît  are affected by a 

measurement error, implying that the second-step OLS of the previous IV approach 

would provide inconsistent estimation of parameters’ in (21.1). To overcome this 

problem, as usual in the presence of measurement error, one could perform a two-stage 

least squares (2SLS) for equation (21.1) using as instruments the following exogenous 

variables (
1 2 3
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, , [ ], , ,i wi wi i wi i wi i wi ip p p T p T p T−x x x ). Operationally, this implies three 

steps:  

1. Estimate the type-2 tobit model of w and t on x and z, and get ˆ
wip and ît , i.e.  the 

predicted probability of wi and the predicted dose ti respectively.  

2. Run an OLS of w and t on (1, x, ˆ
wip and ît ), thus getting the new fitted values 

w2fv,i  and t2fv,i. 

3. Run a second OLS of y on 
2 , 2 , 2 , 1 , 2 , 2 , 2 , 3 ,

ˆ ˆ ˆ, , [ ], , ,i fv i fv i i fv i fv i fv i fv i fv i fv iw w w T w T w T−x x x . 

 

This 2SLS approach provides consistent estimation of the basic coefficients 

0,  ,  ATE, ,  ,  ,  a b cµ 0δ δ  also in presence of measurement error due to type-2 tobit 

misspecification (see Wooldridge, 2010, pp. 937-951 for a similar approach). Of course, 

when the specification error is not present, then the “direct” IV approach will be more 
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efficient and should be employed. However, the 2SLS procedure will be more robust. 

See Cerulli (2014) for a Monte Carlo comparison of such models. □ 

  



44 

 

Table 1. Variables used in the specification of the outcome regression model. 
 

Covariates  

Treatment Binary treatment indicator taking value 1 for supported and 0 for non-supported firms 

Treatment level or dose Intensity of treatment varying between 0 and 100 

N. of employees Number of company employees, as proxy of company size 

Debt Stock of company total stock of debt (long, medium and short term) on total turnover 

Cash-flow Rate of profitability, as proxy of company liquidity constrain 

Labour-intensity Labor cost to turnover 

Capital-intensity Stock of firm material assets to turnover, as measure of capital deepening 

Knowledge Stock Stock of firm immaterial assets, as measure of accumulated R&D experience 

Group Binary indicator taking value 1 if the company is part of a group and 0 otherwise 

Export Binary indicator taking value 1 if the company exports and 0 otherwise 

Size Six categories for company size, using the number of employees 

Sector Four categories representing Pavitt sector taxonomy 

Location Twenty Italian regions 

Outcomes  

Gross R&D expenditure Total R&D expenditure 

Net R&D expenditure Total R&D expenditure minus the public support received by the firm 

Gross R&D per capita Total R&D expenditure on total number of employees 

Net R&D per capita Net R&D expenditure on total number of employees 

Gross R&D intensity Total R&D expenditure on company turnover 

Net R&D intensity Net R&D expenditure on company turnover 

 

 

 

Table 2. Representativeness of the final sample employed in this application.  
 

Sample Population 

Size 

0-10 8.78 3.08 

11-20 12.24 29.48 

21-50 18.2 33.98 

51-250 50.05 25.67 

251-500 6.39 4.05 

>500 4.33 3.74 

Location 

North 73.13 67.83 

Center 16.68 18.09 

South & Ilands 10.21 14.06 

Sector 

Traditional 42.47 51.23 

Scale intensive 15.6 18.03 

Specialized suppliers 36.19 25.93 

High-tech 5.74 4.8 

Number of obs. 932 14,106 
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Note: “Population” figures are calculated using the 9th Unicredit survey (the intermediate one), by weighting 

companies though stratified sample weights in order to approximate the actual structure of Italian manufacturing 

companies with more than 10 employees.     

 

 

Table 3. Some descriptive statistics for public financed company R&D share.  
 

 

Number of obs. 235 

Mean 40.32 

Std. Dev. 33.67 

Min 1 

Max 100 

Median 30 
 

 

 

  
.0

0
4

.0
0

6
.0

0
8

.0
1

.0
1

2
.0

1
4

D
e

n
s
it
y

0 50 100
lsuss

kernel = epanechnikov, bandwidth = 10.1712

Kernel density estimate



46 

 

Table 4. Baseline regression for assessing the effect of public support intensity on firm R&D outcomes. 
 

 (1) (2) (3) (4) (5) (6) 

 Gross R&D Net R&D Gross R&D 

per capita 

Net R&D per 

capita 

Gross R&D 

intensity 

Net R&D 

intensity 

 

Treatment 308.39** 325.74** 1.66 1.22 0.01 0.01 

 (142.48) (137.25) (1.22) (1.19) (0.01) (0.01) 

       

N. of employees 2.14*** 2.11*** -0.00 -0.00 -0.00 -0.00 

 (0.26) (0.25) (0.00) (0.00) (0.00) (0.00) 

       

Debt -3.27* -3.38* 0.01 0.01 0.00 0.00 

 (1.95) (1.88) (0.02) (0.02) (0.00) (0.00) 

       

Cash-flow -7.49** -7.44*** 0.02 0.01 0.00* 0.00* 

 (2.99) (2.88) (0.03) (0.02) (0.00) (0.00) 

       

Labour-intensity 1.65 1.78 -0.02 -0.02 0.00 0.00 

 (3.41) (3.29) (0.03) (0.03) (0.00) (0.00) 

       

Capital-intensity 0.96 0.95 0.01* 0.01* -0.00 -0.00 

 (0.80) (0.77) (0.01) (0.01) (0.00) (0.00) 

       

Knowledge 

Stock 

4.53 4.86 0.13 0.14 0.00 0.00 

 (16.85) (16.23) (0.14) (0.14) (0.00) (0.00) 

       

Group 159.25** 124.34* 0.86 0.66 0.01 0.00 

 (69.39) (66.84) (0.59) (0.58) (0.00) (0.00) 

       

Export -1.74 4.06 0.96 0.81 -0.01 -0.01 

 (79.93) (76.99) (0.69) (0.66) (0.00) (0.00) 

       

Parameter a -3.01 -12.27 0.01 -0.01 -0.00 -0.00 

 (19.39) (18.68) (0.17) (0.16) (0.00) (0.00) 

       

Parameter b 0.00 0.01 -0.00 -0.00 -0.00 -0.00 

 (0.48) (0.46) (0.00) (0.00) (0.00) (0.00) 

       

Parameter c 0.00 0.00 0.00 0.00 0.00 0.00 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

N 932 932 932 932 928 928 

adj. R2 0.399 0.345 -0.004 -0.011 0.041 0.034 

r2 0.43 0.38 0.04 0.04 0.09 0.08 

F 14.75 11.90 0.93 0.77 1.88 1.72 

Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Sector, size and location dummies not 

reported. 
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Table 5. Baseline regression for assessing the effect of public support intensity on firm R&D outcomes. 

Standardized coefficients. 
 

 (1) (2) (3) (4) (5) (6) 

 Gross R&D Net R&D Gross R&D 

per capita 

Net R&D 

per capita 

Gross R&D 

intensity 

Net R&D 

intensity 

 

Treatment 0.118** 0.136** 0.096 0.073 0.096 0.076 

 (142.48) (137.25) (1.22) (1.19) (0.01) (0.01) 

       

N. of employees 0.390*** 0.417*** -0.043 -0.038 -0.084 -0.082 

 (0.26) (0.25) (0.00) (0.00) (0.00) (0.00) 

       

Debt -0.052* -0.059* 0.036 0.029 0.059 0.051 

 (1.95) (1.88) (0.02) (0.02) (0.00) (0.00) 

       

Cash-flow -0.071** -0.076*** 0.022 0.019 0.070* 0.069* 

 (2.99) (2.88) (0.03) (0.02) (0.00) (0.00) 

       

Labour-intensity 0.015 0.018 -0.026 -0.028 0.014 0.012 

 (3.41) (3.29) (0.03) (0.03) (0.00) (0.00) 

       

Capital-intensity 0.038 0.041 0.070* 0.076* -0.056 -0.052 

 (0.80) (0.77) (0.01) (0.01) (0.00) (0.00) 

       

Knowledge Stock 0.009 0.010 0.038 0.041 0.028 0.031 

 (16.85) (16.23) (0.14) (0.14) (0.00) (0.00) 

       

Group 0.066** 0.056* 0.054 0.043 0.054 0.051 

 (69.39) (66.84) (0.59) (0.58) (0.00) (0.00) 

       

Export -0.001 0.002 0.051 0.045 -0.043 -0.059 

 (79.93) (76.99) (0.69) (0.66) (0.00) (0.00) 

       

Parameter a -0.057 -0.252 0.022 -0.034 -0.005 -0.094 

 (19.39) (18.68) (0.17) (0.16) (0.00) (0.00) 

       

Parameter b 0.006 0.019 -0.064 -0.209 -0.156 -0.138 

 (0.48) (0.46) (0.00) (0.00) (0.00) (0.00) 

       

Parameter c 0.012 0.090 0.056 0.142 0.187 0.133 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

N 932 932 932 932 928 928 

adj. R2 0.399 0.345 -0.004 -0.011 0.041 0.034 

r2 0.43 0.38 0.04 0.04 0.09 0.08 

F 14.75 11.90 0.93 0.77 1.88 1.72 

Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Sector, size and location dummies not 

reported. 
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Table 6.  Description of the dataset “nlswork.dta”. Data from the National Longitudinal Survey (NLS) on 

young women (14-26 years), based on a series of interviews carried out from 1968 to 1988. 
 

Variable name Variable meaning 

idcode NLS id 

year Interview year 

birth_yr  Birth year 

age Age in current year 

race White, black, other 

married 1 if married; 0 if otherwise 

never_married 1 if never married; 0 otherwise 

grade Current grade completed 

collgrad 1 if college graduated; 0 otherwise 

south 1 if living in south, 0 otherwise 

not_smsa 1 if not living in a metropolitan area (SMSA); 0 otherwise 

c_city 1 if living in central city; 0 otherwise 

ind_code Type of industry 

occ_code Type of occupation 

wks_ue Weeks unemployed last year 

wks_work Weeks worked last year 

msp              1 if married, with spouse present 

union 1 if a union worker; 0 otherwise 

wage Hourly wage 

hours Usual number of hours worked 

ttl_exp Total work experience 

tenure Job tenure (measured in years) 

wks_work Weeks worked last year 

ln_wage ln(wage/GNP deflator) 
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Table 7. Heckman selection model - two-step estimates. Regression model with sample selection.  
 

Coefficient 

(standard error) 

tenure3 (truncated) 

  Age 3.555* 

(1.842) 

  age_sq -0.036 

(0.025) 

  birth_yr 0.347 

(0.347) 

  Grade -0.703 

(1.213) 

  Union 5.026*** 

(1.796) 

  _cons -11.42 

(25.79) 

Treatment 

  Age -0.102*** 

(0.032) 

  age_sq 0.001** 

(0.001) 

  birth_yr -0.010 

(0.007) 

  Grade 0.070*** 

(0.008) 

  Msp 0.051 

(0.040) 

  _cons 3.369*** 

(0.576) 

Mills 

  Lambda -103.2 

(106.9) 

  Rho -1.0 

  Sigma 103.2 

Number of observations 15344 

Censored observations 557 

Uncensored observations 14787 

Wald chi2(5) 46.49 

Prob > chi2 0.000 
 

Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. 
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Table 8. Instrumental variables (2SLS) regression. 
 

ln_wage 

Coefficient 

(standard error) 

Treatment 1.665 

(-3.191) 

_ws_age -0.667 

(0.982) 

_ws_age_sq 0.013 

(0.016) 

_ws_birth_yr 0.197 

(0.355) 

_ws_grade 0.431* 

(0.243) 

Tw_1 0.065 

(0.124) 

Tw_2 0.000 

(0.002) 

Tw_3 0.000 

(0.000) 

Age 0.583 

(0.926) 

age_sq -0.012 

(0.015) 

birth_yr -0.190 

(0.340) 

Grade -0.356 

(0.239) 

_cons 7.775 

(26.80) 

Number of obs 15344 

F( 12, 15331) 89.53 

Prob > F 0.000 

R-squared n.a. 

Root MSE 0.85704 

Instrumented:  

Treatment, _ws_age, _ws_age_sq, _ws_birth_yr, _ws_grade, Tw_1, Tw_2, Tw_3 

Instruments:   

age, age,_sq birth_yr, grade, probw, _ps,_age, _ps,_age_sq, _ps_birth_yr, _ps_grade, T_hatp_1,  T_hatp_2, 

T_hatp_3 

 

Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. 
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Figure 1. Distribution of ATE(x,t), ATET(x,t) and ATENT(x,t) and dose-response function with 

confidence intervals. 
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Gross R&D intensity 

  
 

Net R&D intensity 

  

 

 

Figure 2. Distribution of “job tenure” and the “log of job tenure”. 
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Figure 3. OLS (panel (a)) and IV (panel (b)) estimation of the dose-response function of “log of job 

tenure” on “log of wage” by a truncation of the “log of job tenure” carried out at dose 42.  
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