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Abstract

In this paper we present a unified structural equation modeling
(SEM) framework for the regression-based decomposition of rank-
dependent indicators of socioeconomic inequality of health and com-
pare it with simple ordinary least squares (OLS) regression. The SEM
framework forms the basis for a proper use of the most prominent
one- and two-dimensional decompositions and provides an argument
for using the bivariate multiple regression model for two-dimensional
decomposition. Within the SEM framework, the two-dimensional de-
composition integrates the feedback mechanism between health and
socioeconomic status and allows for different sets of determinants of
these variables. We illustrate the SEM approach and its outperfor-
mance to OLS using data from the Ethiopia 2011 Demographic and
Health Survey (DHS).
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1 Introduction

The dominant approach with regard to the measurement of socioeconomic
inequality of health consists of using rank-dependent indicators. They are
called rank-dependent because they can be expressed as weighted averages
of individual health levels, with the weights determined by the ranks of in-
dividuals in the socioeconomic distribution. Indices of this type allow us to
find out whether there is pro-rich or pro-poor bias in the health distribution:
positive values indicate that people who are relatively well-off in socioeco-
nomic terms tend to have better health than those who are less well-off,
and negative values the opposite. The standard health Concentration Index
(Wagstaff, Paci and Van Doorslaer, 1991) is undoubtedly the most popu-
lar rank-dependent index. There is now also an increasing literature on the
decomposition of the Concentration Index using various econometric tech-
niques (see, e.g., Wagstaff, Van Doorslaer and Watanabe, 2003; Van Ourti,
Van Doorslaer and Koolman, 2009; Allanson and Petrie, 2013). An overview
of recent contributions on the measurement and decomposition of socioeco-
nomic inequality of health can be found in Van Doorslaer and Van Ourti
(2011) and Van Ourti, Erreygers and Clarke (2014).

Compared to indicators of income inequality or health inequality, which
measure the degree of inequality within a given univariate distribution for
income or health, indicators of socioeconomic inequality of health are bivari-
ate in nature because they measure the degree of correlation between health
and socioeconomic status. To explain the degree of correlation between these
two variables rather than the degree of inequality in one variable, Erreygers
and Kessels (2013) proposed a set of two-dimensional decompositions that
investigate both variables simultaneously. The most salient of these decom-
positions is based on the bivariate multiple regression model explaining health
and socioeconomic status simultaneously. This decomposition captures not
only the direct contributions of the explanatory variables in the regressions,
but also their combined or correlated contributions.

However, two criticisms may be made of the two-dimensional decompo-
sition analysis based on the bivariate multiple regression model. The first is
that the bivariate multiple regression model uses the same set of variables to
explain both health and socioeconomic status, which may not be the most
appropriate assumption given that the determinants of health and socioeco-
nomic status need not be the same. Related to this, the second criticism is
that socioeconomic status is not included as an explanatory variable in the
regression of health, and health not included as an explanatory variable in the
regression of socioeconomic status. The existence of a reciprocal relationship
might be examined since health is potentially both a cause and a conse-
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quence of socioeconomic status (O’Donnell, Van Doorslaer and Van Ourti,
2014). In the literature on the decomposition of socioeconomic inequality
of health, several empirical studies (see, e.g., Wagstaff, Van Doorslaer and
Watanabe, 2003; Hosseinpoor et al., 2006; Van de Poel et al., 2007; Doherty,
Walsh and O’Neill, 2014) have investigated the impact of socioeconomic sta-
tus on health, reporting evidence that socioeconomic status is an important
determinant of health.

The main objective of Erreygers and Kessels (2013) was to compare the
two-dimensional decomposition to the one-dimensional decompositions that
are based on regressions of only one of the two variables under consideration.
Therefore, they used the same set of explanatory variables in all regressions,
which are all estimated using ordinary least squares (OLS). Moreover, for
the one-dimensional decompositions, they argued that including either of
the variables as an explanatory variable in the single regressions distorts the
explanation of the correlation between health and socioeconomic status. It
is then as if the variable in question is treated both as a dependent and as
an independent variable. As a result, for the two-dimensional decomposi-
tion, the bivariate multiple regression modeling framework was chosen which
includes neither health nor socioeconomic status as an explanatory variable.

To bridge the gap between empirical observations and modeling practice,
we propose a flexible modeling approach for the decomposition of socioe-
conomic inequality of health that makes use of a structural or simultaneous
equation model (SEM). The model allows for different sets of determinants of
health and socioeconomic status as well as for the inclusion of socioeconomic
status as an explanatory variable in the regression of health and health as an
explanatory variable in the regression of socioeconomic status. The model
produces consistent estimates of the regression coefficients using a two-step
generalized method of moments (GMM) estimation procedure that includes
instrumental variables. Although such a modeling approach has been hinted
at before (Wagstaff, Van Doorslaer and Watanabe, 2003: 214, n.12), our
paper is the first to adopt it in practice.

The outline of the remainder of the paper is as follows. Section 2 re-
views the Generalized health Concentration Index and the various concepts
it embraces. Section 3 gives an overview of the most important one- and
two-dimensional decompositions based on OLS regression. In Section 4, we
present a unified SEM approach for regression-based decomposition analy-
sis and show how it fits with the existing decompositions. By means of an
empirical analysis of child malnutrition in Ethiopia in Section 5, we illus-
trate the proper use of the one- and two-dimensional decompositions within
the OLS and SEM regression framework. Finally, Section 6 summarizes the
paper and discusses the main outcomes.
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2 Generalized health Concentration Index

We consider a population of n individuals for which the health level of indi-
vidual i, denoted as hi, is either a ratio-scale variable which takes nonnegative
values only, or a cardinal variable with a finite lower bound. The average
health level in the population is equal to µh = 1

n

∑n
i=1 hi.

Erreygers and Van Ourti (2011) pointed out that the use of the health
Concentration Index is apropos when we are dealing with a ratio-scale health
variable which is unbounded, i.e. which does not have a finite upper bound.
However, when we are dealing with a variable which has a finite upper bound,
a modified version is called for. For this situation, Wagstaff (2005) and
Erreygers (2009) each proposed a variant of the Generalized Concentration
Index.

All these indices belong to the family of rank-dependent indices: they
can be expressed as weighted sums of health levels with the weights deter-
mined by socioeconomic ranks. The socioeconomic rank of individual i is
determined by his/her position according to the variable chosen to measure
socioeconomic well-being, e.g. income. Let the value of this variable for in-
dividual i be yi. Then the natural number ri(y), or more simply ri, measures
the position of individual i in the rank-order according to variable y, with the
rank ri = 1 assigned to the person who is least well-off, and the rank ri = n
assigned to the person who is most well-off. In the case of ties, we assign to
every individual of the tied group the average rank of the group. Over the
population as a whole the average rank is µr = n+1

2
. The fractional rank fi

is defined as fi ≡ 1
n

(
ri − 1

2

)
, and varies between 1

2n
and 1− 1

2n
. The average

fractional rank is µf = 1
2
. Finally, the deviation of the fractional rank of

individual i from the average fractional rank, denoted as di ≡ fi − µf , has
an average of µd = 0.

The Generalized health Concentration Index GC is defined as:

GC =
2

n

n∑
i=1

hidi (1)

The standard health Concentration Index as well as the indices introduced
by Wagstaff (2005) and Erreygers (2009) are simple functions of GC. We
can rewrite the formula for GC using a well-known relationship between
the rank-dependent indices and the covariance concept. Since Cov(h, d) =
1
n

∑n
i=1 hidi − µhµd and µd = 0, the value for GC can also be computed as:

GC = 2Cov(h, d) (2)

Erreygers and Kessels (2013) used both (1) and (2) to generate decomposi-
tions of the Generalized Concentration Index. Some of these decompositions
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have a constant term. Because it is problematic to give a meaningful inter-
pretation to the constant term, the most attractive decompositions are those
without a constant term. In the next section, we review these decompositions,
two of which are one-dimensional and one is two-dimensional. In the one-
dimensional decompositions, either the health variable or the fractional rank
deviation variable is subject to a regression, whereas in the two-dimensional
decomposition, both variables are subject to a regression. The regression
approach used is simply OLS.

3 One- and two-dimensional decompositions

using OLS regression

3.1 The health-oriented decomposition

The health-oriented decomposition, introduced by Wagstaff, Van Doorslaer
and Watanabe (2003), has been the first and most well-known regression-
based decomposition. It starts from the linear regression model describing
the relationship between the health variable h and a number of explanatory
variables x1, x2, ..., xk:

hi = β0 + β1x1,i + β2x2,i + ...+ βkxk,i + εi (3)

where εi is an error term. Substituting the right-hand side of this model
for hi in the ‘product definition’ of the GC in (1) and working out the re-
sult, we obtain the health-oriented decomposition, henceforth referred to as
decomposition (I):

GC = 2
k∑
j=1

βjCov(xj, d) + 2Cov(ε, d) (4)

This decomposition has a deterministic component consisting of a sum of k
contributions, one for each explanatory variable, and a residual component.

As argued by Erreygers and Kessels (2013), it is misleading to include the
fractional rank deviation variable d in the OLS regression for h in decompo-
sition (I), or any proxy variable strongly correlated with d such as income or
consumption. In that case, the residual component will be zero, or close to
zero, suggesting that we have explained all or most of the variation in the
Generalized Concentration Index. This result is, however, merely an arte-
fact from the OLS regression-based approach of decomposition (I). Consider,
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for example, the simple case where the variable d is the only explanatory
variable of h, i.e. x1 = d. Since the OLS estimate of β1 is then equal to
Cov(h, d)/V ar(d), it follows that the deterministic component of decompo-
sition (I) is identical to GC and therefore the residual component equal to
zero. However, in this case, we have explained nothing at all. We are just
treating the fractional rank deviation variable d both as a dependent and as
an independent variable.

Even though empirical work suggests that the socioeconomic variable is
an important predictor for health (see, e.g., Wagstaff, Van Doorslaer and
Watanabe, 2003; Hosseinpoor et al., 2006; Van de Poel et al., 2007; Doherty,
Walsh and O’Neill, 2014), the OLS regression-based methodology of decom-
position (I) does not provide the right framework to use this result for the
explanation of socioeconomic inequality of health. To bridge the gap between
the empirical result and the regression-based decomposition methodology, we
propose using a SEM approach (see Section 4) that unifies these contrasting
themes.

3.2 A rank-oriented decomposition

Erreygers and Kessels (2013) introduced a rank-oriented decomposition that
relies on a linear regression model for the fractional rank deviations. Assum-
ing that the variables z1, z2, ..., zq are the relevant variables to explain the
socioeconomic ranks, this model is given by

di = γ0 + γ1z1,i + γ2z2,i + ...+ γqzq,i + ξi (5)

where ξi is an error term. Substituting the right-hand side of this model
for di in the ‘covariance definition’ of the GC in (2) and working out the
result, we arrive at the rank-oriented decomposition, henceforth referred to
as decomposition (II):

GC = 2

q∑
g=1

γgCov(h, zg) + 2Cov(h, ξ) (6)

Decomposition (II) has a similar structure as decomposition (I) because it
decomposes the Generalized Concentration Index into a sum of q explained
contributions, with each of these equal to a covariance weighted by a regres-
sion coefficient, and a residual or unexplained component, which is also a
covariance. In line with proper practice to exclude the socioeconomic vari-
able d in the OLS regression for h in decomposition (I), Erreygers and Kessels
(2013) also advise against the inclusion of h in the OLS regression for d be-
cause it would artificially result in a zero residual covariance in decomposition
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(II). In this case, too, in order to make room for a possible effect of health on
socioeconomic status in the framework of decomposition (II), we recommend
using a SEM procedure that describes the feedback mechanism between these
two variables (see Section 4).

3.3 A two-dimensional simultaneous decomposition

To attend to the bivariate nature of the Generalized Concentration Index,
Erreygers and Kessels (2013) proposed a set of two-dimensional decomposi-
tions that investigate the health levels h and the fractional rank deviations
d simultaneously. The most salient of these decompositions is based on the
bivariate multiple regression model explaining both variables simultaneously.
Typical for the bivariate multiple regression is that a common set of p vari-
ables s1, s2, ..., sp is used to explain h and d. The bivariate multiple regression
has the following form:

hi = λ0 + λ1s1,i + λ2s2,i + ...+ λpsp,i + ψi (7)

di = π0 + π1s1,i + π2s2,i + ...+ πpsp,i + χi (8)

where ψi and χi are error terms. It is assumed that µψ = µχ = 0 and that
the 2p covariances Cov(sj, χ) and Cov(ψ, sj) are zero.

Applying the ‘covariance definition’ of the GC in (2) to the bivariate mul-
tiple regression model leads to the simultaneous decomposition, henceforth
referred to as decomposition (III):

GC = 2

p∑
j=1

λjπjV ar(sj) + 2

p∑
j=1

p∑
g=j+1

(λjπg + λgπj)Cov(sj, sg)

+2Cov(ψ, χ) (9)

It consists of p single-variable terms λjπjV ar(sj) which capture the direct

effect of the p explanatory variables, p(p−1)
2

two-variable terms (λjπg+λgπj) ×
Cov(sj, sg) which capture the correlation structure between the explanatory
variables, and a residual component which is proportional to the covariance
between the two error terms.

In the next section, we show that the simultaneous decomposition based
on the bivariate multiple regression model is also the decomposition that we
obtain from applying a SEM regression approach.
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4 A unified structural equation modeling ap-

proach for decomposition analysis

Perhaps the most pertinent critique of the bivariate multiple regression model
as a basis for two-dimensional decomposition is the one that questions the
assumption that the same set of p variables explains both the health variable
h and the fractional rank deviation d. The challenge rests on the grounds
that the determinants of health and socioeconomic status need not be the
same. Moreover, the bivariate multiple regression model seems inflexible in
the sense that it does not include h as a predictor in the equation for d and d
as a predictor in the equation for h. Empirical evidence has shown, however,
that health is largely influenced by socioeconomic status. It might also be the
case that socioeconomic status is influenced by health, implying that both
variables influence one another reciprocally.

To overcome the criticisms of the bivariate multiple regression model,
we propose the specification of a structural or simultaneous equation model
(SEM) (see, e.g., Greene, 2011, chapter 10; Verbeek, 2012, chapter 5) which
allows for different sets of predictors for h and d as well as the addition of d
as a predictor in the equation for h and of h as a predictor in the equation
for d. These structural equations are meant to represent causal relationships
among the variables in the model.

We assume that the variables x1, x2, ..., xk with xk = d are the relevant
variables in the equation for h and z1, z2, ..., zq with zq = h are the relevant
variables in the equation for d. We then have the following structural model
of two equations (SEM):

hi = β0 +
k−1∑
j=1

βjxj,i + βkdi + εi (10)

di = γ0 +

q−1∑
g=1

γgzg,i + γqhi + ξi (11)

In the SEM, the variables h and d are assumed endogenous or jointly deter-
mined by the system of simultaneous equations. The random error terms ε
and ξ affect both h and d (which is made clear by rewriting (11) in terms
of h), suggesting a correlation between each of the endogenous variables and
each of the random error terms. The remainder of the variables in the SEM
are assumed exogenous or determined outside the system.

Because of the endogeneity of the variables h and d, OLS regression
cannot be relied upon to produce consistent estimates of the parameters
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of the equations. Instead, a generalized method of moments (GMM) estima-
tion procedure using instrumental variable (IV) estimation or two-stage least
squares (2SLS) is needed to consistently estimate all parameters of the SEM
(Hansen, 1982). This requires the introduction of at least one instrumental
variable or instrument for each equation. An instrument for an equation
is strongly correlated with the right-hand side endogenous variable of that
equation but uncorrelated with the equation’s error term. Moreover, an in-
strument does not have a direct effect on the response variable, and thus it
does not belong on the right-hand side of the equation as an explanatory
variable. It is therefore only a tool or instrument to solve the endogeneity
problem, hence the name. Using an efficient GMM estimator, a necessary
condition for identification of the two-equation SEM is that each equation
has at least one exogenous variable that is not present in the other equation.

Once the SEM is estimated, Equation (10) can be used as input for de-
composition (I) and Equation (11) as input for decomposition (II). In this
way, by using an efficient GMM estimation procedure instead of OLS, the
contribution of d in decomposition (I) and of h in decomposition (II) is duly
measured.

Substituting the right-hand side of (11) for di in (10) and the right-hand
side of (10) for hi in (11), we obtain:

hi = β0 +
k−1∑
j=1

βjxj,i + βk

[
γ0 +

q−1∑
g=1

γgzg,i + γqhi + ξi

]
+ εi

di = γ0 +

q−1∑
g=1

γgzg,i + γq

[
β0 +

k−1∑
j=1

βjxj,i + βkdi + εi

]
+ ξi

Rearranging terms and assuming that βkγq 6= 1, we arrive at the following
reformulation of the model, which is called the reduced form of the SEM:

hi =
β0 + βkγ0
1− βkγq

+
k−1∑
j=1

βj
1− βkγq

xj,i +

q−1∑
g=1

βkγg
1− βkγq

zg,i +
εi + βkξi
1− βkγq

(12)

di =
γ0 + β0γq
1− βkγq

+
k−1∑
j=1

βjγq
1− βkγq

xj,i +

q−1∑
g=1

γg
1− βkγq

zg,i +
ξi + γqεi
1− βkγq

(13)

The reduced-form equations express each endogenous variable, h and d, in
terms of the exogenous variables, x1, x2, ..., xk−1 and z1, z2, ..., zq−1, and the
intercept, plus an error term. If variable xj∗ is equal to variable zg∗ – nothing
excludes this case – then the coefficient of the variable in question in (12)
will be (βj∗ + βkγg∗)/(1− βkγq), and in (13) (βj∗γq + γg∗)/(1− βkγq).
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Like the bivariate multiple regression model (7)–(8), the reduced form
of the SEM in (12)–(13) is characterized by the same set of explanatory
variables, which we note as s1, s2, ..., sp. Equations (12) and (13) can then
be simplified as:

hi = λ0 + λ1s1,i + λ2s2,i + ...+ λpsp,i + ψi (14)

di = π0 + π1s1,i + π2s2,i + ...+ πpsp,i + χi (15)

The parameters λ0, λ1, ..., λp and π0, π1, ..., πp in (14)–(15) are called reduced-
form parameters. The error terms ψi and χi are called reduced-form errors.

The reduced-form equations (14)–(15) are equivalent to the bivariate mul-
tiple regression model (7)–(8), and can be directly estimated by OLS since
the right-hand side variables are exogenous and uncorrelated with the ran-
dom errors ψi and χi. This shows that using a SEM regression approach, we
end up with decomposition (III) based on the bivariate multiple regression
model. Within the SEM framework, this decomposition incorporates the
feedback mechanism between the variables h and d which are allowed to de-
pend on different sets of predictors. As a result, the above analysis answers
the criticisms of the bivariate multiple regression model and the resulting
decomposition (III).

In our empirical illustration described in the next section, we show that
a SEM regression analysis forms the basis for a proper use of decompositions
(I), (II) and (III).

5 An empirical illustration

5.1 Data description

For comparison the data are the same as those used by Erreygers and Kessels
(2013). They come from the 2011 Demographic and Health Survey (DHS)
of Ethiopia and are confined to children under the age of five.

The response variables in decompositions (I), (II) and (III) are the health
variable h and the fractional rank deviation d. The health variable h is actu-
ally an ill-health variable: the degree of stunting or malnutrition. It is defined
on the unit interval [0, 1] and provides information on the depth of malnutri-
tion with children. It is measured using the child’s height-for-age standard
deviation or z-score which is the difference between the height of a child and
the median height of a child of the same age and sex in a well-nourished
reference population divided by the standard deviation in the reference pop-
ulation. The new WHO child growth population was chosen as reference
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population. The degree of stunting is stated relative to the threshold of
minus two standard deviations of the median of the reference population.
Children with a z-score greater than this threshold are not stunted and are
assigned a zero degree value. The other children are stunted and are assigned
a value in the unit interval that is proportional to the magnitude of their z-
score with a z-score of minus six standard deviations corresponding to the
maximum value of one. In total, taking into account the sample weights pro-
vided by DHS, 44% of the children in the dataset are stunted. The fractional
rank deviation d was obtained by ranking the children’s households according
to their wealth status using the wealth indices constructed by DHS from a
principal component analysis on all household living conditions and assets.
In the computation sample weights were taken into account so that, in effect,
the variable d stands for the weighted fractional rank deviation.

The set of explanatory variables is the same as the one used by Erreygers
and Kessels (2013) except for the variable time to water source, which turned
out to be insignificant in their decomposition analyses. The variables are
age and sex of the child, education of the mother and her partner or hus-
band, urban or rural residence, access to safe drinking water and satisfactory
sanitation. In addition to that, child’s age is specified nonlinearly in the
regression models using a squared term, which is mean-centered to remove
multicollinearity with the linear term. Furthermore, safe drinking water and
satisfactory sanitation are defined along the lines proposed by the WHO and
UNICEF. Safe drinking water includes the following sources of water supply:
piped water (piped into dwelling, piped into yard or plot, or public tap),
water from a protected well, tube well or borehole, water from a protected
spring and rainwater. Satisfactory sanitation includes the following sanita-
tion infrastructure: a flush toilet (flush to piped sewer system, septic tank or
pit latrine), a pit latrine with slab, a Ventilated Improved Pit (VIP) latrine
and a composting toilet.

Table 1 shows a summary of all variables with their descriptive statistics
taking into account the sample weights. The data contain information on
9262 children under the age of five. The value for the GC equals −0.0136
using either the ‘product definition’ in (1) or the ‘covariance definition’ in
(2). Its negative sign reveals higher rates of child malnutrition amongst the
poor or a socioeconomic inequality of malnutrition to the disadvantage of the
poor. In the next two sections, we apply the various approaches described in
this paper to compute decompositions (I), (II) and (III), which we express
in percentages. We first discuss the decomposition results from using OLS
regression, and then those from using a SEM approach. We performed all
regression analyses using the econometric software package EViews 8.
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5.2 Decomposition results using OLS regression

5.2.1 Decompositions (I) and (II)

The results for decompositions (I) and (II) depend on the specification of the
OLS regression model used. For decomposition (I), an important comparison
to study is that between excluding and including the weighted fractional rank
deviation d in the regression for the degree of stunting h. For decomposition
(II), we carry out a similar analysis comparing the results from excluding
and including h in the regression for d. Table 2 contains the coefficients for
the two sets of regressions for h and d as well as the t- and F -statistics and
significances. We corrected standard errors for heteroskedasticity by using
White’s heteroskedasticity-consistent standard errors.

Using OLS regression the t-statistics indicate that the variables d and h
are highly significant in the regressions for h and d, respectively. In other
words, h is very much influenced by d, and vice versa, d is very much in-
fluenced by h. Furthermore, the regression results for h are largely affected
when d is included as a regressor, whereas the regression results for d do not
seem to differ much when h is included. When d is excluded in the regression
for h, all variables are significant at the 5% level except for safe drinking wa-
ter. However, when d is included in the regression for h, two more variables
besides safe drinking water turn out to be insignificant, namely residence
type and satisfactory sanitation. Also, education of the mother and her
partner have become less significant when including d as a regressor. Conse-
quently, it seems that d is attributing some of the explanatory variation of
these variables in the regression for h. In contrast, when h is included in the
regression for d, only child’s age is affected in the sense that it has become
more significant. Although we argue that the OLS framework is not the right
methodology to estimate the regression models with d and h as regressors,
because of the correlated nature of the cross-sectional data, we suspect that
the regression model for h including d makes more sense than the regression
model for d including h.

Using the two regressions for h, excluding and including d, we computed
two versions of decomposition (I) and using the two regressions for d, ex-
cluding and including h, we computed two versions of decomposition (II).
The percentage contributions of these decompositions are shown in Table 3
and visualized in Figure 1. An important observation is that decomposition
(I) has a zero residual component when d is included and decomposition (II)
has a zero residual component when h is included. Also, the contributions
for d in decomposition (I) and for h in decomposition (II) are by far the
largest, being 66.08% and 43.08%, and seem to capture all residual variation
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on top of their real contributions when compared to the large residual value of
39.76% of decomposition (I) excluding d and of decomposition (II) excluding
h. As discussed in Section 3.1, this result is an artefact of including either
socioeconomic status or health as a variable in the decompositions that aim
to explain the correlation between these variables.

One might thus inadvertently conclude that the contributions of d and h
are very large in decompositions (I) and (II). However, for decomposition (I),
the contribution of d exceeds the residual term from excluding d by a factor of
1.66, whereas for decomposition (II), the contribution of h is about the same
as the residual term from excluding h. Compared to these residual terms, the
contribution of the socioeconomic variable in decomposition (I) may be real
and large, but not as large as 66.08%, whereas the contribution of the health
variable in decomposition (II) may not be real. Also, similar to the regression
results, when d is included in decomposition (I), the contributions of most
other variables are smaller in absolute magnitude than when d is excluded.
In contrast, when h is included in decomposition (II), the contributions of
the other variables seem largely unaffected.

5.2.2 Decomposition (III)

We computed decomposition (III) starting from the bivariate multiple regres-
sion model, the coefficients of which are the same as those from the univariate
regressions for h excluding d and for d excluding h, shown in Table 2. Table 4
contains the individual percentage contributions of decomposition (III). As
indicated by Erreygers and Kessels (2013), the column and row totals of the
contributions of decomposition (III) relate to decompositions (I) and (II)
from the regressions for h excluding d and for d excluding h. The contribu-
tion of the residual term in decomposition (III) is therefore the same as in
decompositions (I) and (II), equating to 39.76%. Table 5 contains a sum-
mary presentation of decomposition (III) showing the direct and combined
or correlated percentage contributions. Similar to the results of Erreygers
and Kessels (2013), the total of the combined or correlated contributions is
almost twice as large as the total of the direct contributions. As a compari-
son, Figure 2 contains the direct percentage contributions of decomposition
(III) as well as the contributions from decomposition (I) excluding d and
from decomposition (II) excluding h.

Assuming that all explanatory variables in the bivariate multiple regres-
sion model are the exogenous variables in a two-equation SEM for the es-
timation of h and d, decomposition (III) takes into account the mutual de-
pendency between h and d and thus captures the net or reduced effects of
the explaining variables upon both h and d. In the next section, we further
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discuss the relevant decompositions obtained from using a SEM approach.

5.3 Decomposition results using a SEM approach

5.3.1 SEM estimation

A first step in a SEM regression analysis for the estimation of h and d as en-
dogenous variables in Equations (10)–(11) is to define the exogenous variables
for each equation as well as the instrumental variables for GMM analysis.
Looking at the OLS regression results in Table 2, we learn that the variables
child’s age, both its linear and squared term, and sex of child are important
predictors for h, but not for d, whereas the variables residence type, safe
drinking water and satisfactory sanitation are important predictors for d,
but not for h. We have therefore removed the variables residence type, safe
drinking water and satisfactory sanitation in the equation for h, and used
residence type and satisfactory sanitation as instruments for d. We did not
include safe drinking water as an instrument because we obtained a more
powerful GMM analysis by not considering this variable. Similarly, we have
removed the variables child’s age, both its linear and squared term, and sex
of child in the equation for d, and used all three terms as instruments for h.
For each equation in the SEM, we then have at least one exogenous variable
that is not present in the other equation, so that our system is identified.

We estimated the SEM in (10)–(11) using a feasible efficient two-step
GMM procedure for robust covariance estimation in the presence of het-
eroskedasticity (White, 1982) using EViews 8. This procedure is also known
as two-stage instrumental variables (2SIV) or heteroskedastic two-stage least
squares (H2SLS). Table 6 contains the GMM regression coefficients for the
two-equation SEM as well as the OLS regression coefficients for compari-
son. Regarding the GMM analysis, Table 6 includes the t-, Hansen’s J- and
Cragg-Donald F -statistics and significances. Hansen’s J-statistic has a χ2-
distribution under the null hypothesis that the instruments for an equation
in the SEM are valid. The J-statistics for the two equations in the SEM are
not significant at the 5% level so that we conclude that all our instruments
are valid. The Cragg-Donald F -statistic is used to test for weak instruments
or instruments that are not highly correlated with an equation’s right-hand
side endogenous variable. The Cragg-Donald F -statistics for the two equa-
tions in the SEM are highly significant meaning that the instruments for each
equation are strong.

Using GMM regression the t-statistics indicate that the health variable h
is largely influenced by the weighted fractional rank deviation d, but there
is no feedback or two-way influence in the sense that the weighted fractional

14



rank deviation d is not affected by h. This result is different from the result
from OLS regression shown in Table 6 where h is highly significant in the
regression for d (see also the discussion in Section 5.2.1). Furthermore, most
exogenous variables in the GMM analysis of the SEM are significant at the
5% level. Only in the GMM regression for h education of the mother’s partner
is insignificant and education of the mother is significant at the 10% level.

5.3.2 Decompositions

Because the GMM analysis has shown that d has a significant impact on h,
but not vice versa, we use the GMM regression for h of Table 6 as input for
decomposition (I) and we can simply use the OLS regression for d exclud-
ing h of Table 2 as input for decomposition (II). We refer to Section 5.2.1
where we computed decomposition (II) based on this OLS regression. Note
that whether or not we include the variables child’s age, both its linear and
squared term, and sex of child in the OLS regression for d does not make
much difference for decomposition (II). Table 7 contains the percentage con-
tributions of decomposition (I) based on the SEM’s equation for h in (10).
We report the contributions using the GMM regression coefficients of Table 6
as well as the OLS regression coefficients for comparison. Figure 3 visualizes
the two sets of contributions of decomposition (I). Note that, to compute
the contribution of the weighted fractional rank deviation d using the GMM
regression coefficients, we did not include d itself, but the predicted value of
d resulting from the OLS regression of d on all exogenous and instrumental
variables of the SEM’s equation for h.

Table 7 and Figure 3 show that decomposition (I) using GMM regression
has a large residual component of 38.11%, which is of the same size as that of
decomposition (I) excluding d using OLS regression. Furthermore, the con-
tribution of d is much lower and more realistic using GMM instead of OLS.
It reduced from 68.45% using OLS to 42.62% using GMM, which is, how-
ever, still a substantial percentage. Also, the contributions of the variables
education of the mother and her partner have lowered to the same extent,
approximately by a factor of 0.6, using GMM instead of OLS.

Lastly, regarding decomposition (III), whether we use the bivariate mul-
tiple regression model or the SEM regression approach, we end up with the
same decomposition (III) which we discussed in Section 5.2.2.
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6 Summary and discussion

Empirical research has provided evidence that socioeconomic status, repre-
sented by a wealth- or income-related variable, is an important determinant
of health. Vice versa, it is likely that health is an important determinant
of socioeconomic status. However, to explain socioeconomic inequality of
health, or the correlation between health and socioeconomic status, neither
of the variables, health or socioeconomic status, can be used as an explana-
tory variable in an OLS regression-based decomposition approach, because we
would then explain the bivariate dependent variable by one of its univariate
components, which is meaningless. To unify the potentially bidirectional re-
lationship between health and socioeconomic status with the regression-based
decomposition methodology, we recommend using a structural or simultane-
ous equation model (SEM) which captures the feedback mechanism between
health and socioeconomic status using a system of equations for these vari-
ables, which are assumed endogenous. More specifically, this two-equation
model allows the inclusion of socioeconomic status as an explanatory variable
for health and health as an explanatory variable for socioeconomic status,
while providing consistent estimates using a two-step generalized method of
moments (GMM) estimation procedure. Also, it allows the specification of
different sets of determinants of health and socioeconomic status.

The SEM for the estimation of health and socioeconomic status can easily
be transformed into a bivariate multiple regression model for these variables,
which, in the SEM framework, is also called the reduced form of the SEM.
The SEM’s exogenous variables are the explanatory variables in each equa-
tion of this model format. We can then simply apply OLS to estimate the
bivariate multiple regression model and use the regression coefficients as input
for the two-dimensional simultaneous decomposition introduced by Erreygers
and Kessels (2013). As such, we have shown that this decomposition takes
into account the mutual dependency between health and socioeconomic sta-
tus and captures the reduced effects of the explaining variables upon health
and socioeconomic status.

In case one wishes to use one of the main one-dimensional decompositions,
the health-oriented decomposition proposed by Wagstaff, Van Doorslaer and
Watanabe (2003) or the rank-oriented decomposition (without a constant
term) proposed by Erreygers and Kessels (2013), a GMM analysis of the
SEM is required for a proper application of these decompositions. However,
if the GMM regressions indicate that socioeconomic status is insignificant in
the equation for health or health in the equation for socioeconomic status, we
can resort again to an OLS regression analysis of the particular equation(s)
after having removed the insignificant endogenous variable(s). By all means
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we advise against applying OLS to each of the initial SEM equations.
In our empirical illustration, the GMM analysis of the SEM confirms pre-

vious findings that health is largely influenced by socioeconomic status, but
the opposite relationship appears not to hold. In the GMM analysis the effect
of socioeconomic status on health is, however, indirect and measured by the
instrumental variables residence type and satisfactory sanitation. We used
the GMM regression coefficients of the health equation in the health-oriented
decomposition and the OLS regression coefficients of the socioeconomic sta-
tus equation (without an explanatory health variable) in the rank-oriented
decomposition. We recommend such modeling practice when computing one-
dimensional decompositions. The contribution of socioeconomic status in the
health-oriented decomposition turns out to be 42.62%, which is substantial
and by far the largest. This contribution is, however, indirect and measured
by the variables residence type and satisfactory sanitation. The residual term
is not zero compared to using OLS regression coefficients, but amounts to
38.11%, which is about the same size as the residual term from decomposi-
tions based on OLS regressions without health and socioeconomic status as
explanatory variables.

Furthermore, we computed the two-dimensional simultaneous decompo-
sition based on the bivariate multiple regression model since this model is
equivalent to the reduced form of the SEM. The total of the combined or
correlated contributions in this decomposition is almost twice as large as the
total of the direct contributions and the residual term amounts to 39.76%.
In all, we can conclude that the SEM provides a unified modeling framework
for correctly applying the one- and two-dimensional decompositions and we
therefore recommend it as a starting basis for decomposition analysis.

Finally, the SEM proposed in this paper is an observed-variables SEM be-
cause the endogenous variables health and socioeconomic status are observed
or measured. A potentially interesting topic for further research would be
to construct a SEM where the endogenous variables are not observed, but
latent (Jöreskog, 1973). In this respect, it may prove useful to make the
socioeconomic variable, when assumed latent, directly dependent on a series
of wealth-related variables. Also, instead of transforming the socioeconomic
levels into ranks, another avenue would be to use the socioeconomic levels
as such, and to construct a level-dependent index of socioeconomic inequal-
ity of health as proposed by Erreygers and Kessels (2014) to which a SEM
regression-based decomposition analysis can easily be applied.
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