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Abstract

It is well known that macroeconomic shocks can have asymmetric impacts on
the labor market participation of male and female workers. In the absence of
universal social protection, a household may decide to temporarily increase female
employment in order to compensate for a loss of income by the male counterpart.
This phenomenon, usually analyzed during times of recession, is called the added
worker effect. We go beyond this typical setting and attempt to identify and
evaluate the added worker effect during times of a health shock. For this purpose,
we develop and estimate a non-linear DSGE model using Bayesian methods and
data from Sweden, covering the period 1915 - 1956. During this time, Sweden
experienced the severe 1918 influenza pandemic outbreak, two massive economic
recessions, and a period of pre-war preparedness, or Beredskapstiden. We find
that females’ participation in Swedish industry increased during the years related
to the Spanish flu. In addition, the female labor supply responded to male labor
supply fluctuations over the whole sample period.
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1. Introduction

Fluctuations in the size of the workforce have been observed in every major
recession after the Second World War. Two opposing effects are discussed in
connection with labor market participation: the added worker effect and the
discouraged worker effect. The discouraged worker reacts to a deterioration
in expected wages and a decrease in employment opportunities by becoming
inactive or by being refraining from entering the workforce1. The added worker
enters the labor force in times of crises. The most prominent explanation for this
effect is that second-tier workers, who are most likely married females, become
active if the first-tier wage earner drops out of the labor force. Most of the
literature is concerned with the relative sizes of these two effects. In this paper,
we focus on the added worker effect in times of health shocks, which have not
been covered in previous studies.

Households change their labor market participation decisions based on eco-
nomic conditions (Lundberg, 1985). If the first-tier worker becomes unemployed,
a second-tier worker enters the labor force in order to compensate for the loss in
household income (Woytinsky, 1953). A loss in income similar to that of being
unemployed occurs if the first-tier worker falls ill. As in the previous case, the
second-tier worker enters the labor market. However, the size of the added worker
effect depends on households’ insurance. Most developed countries have universal
sick pay that covers all or part of a health-related loss in income. If the loss is
compensated for, the incentive to enter the labor market diminishes. Between
1918 and 1959, Sweden lacked universal sick pay. Furthermore, the country was
affected strongly by the Spanish flu2, one of the most severe influenza-pandemics.
Thus, Sweden provides an interesting case study for the added worker effect in
times of a health-shock3.

To address the added worker effect, we build and estimate a simple non-
linear dynamic stochastic general equilibrium (DSGE) model. The model allows
for asymmetries in participation decision by male and female workers, which
means we can examine the added worker effect by gender4. Furthermore, we

1In a recession, not all potential added workers will find a job. In a recent study, Razzu and
Singleton (2013) find that an outflow from inactivity to unemployment (employment) during
a recession (boom) substantially increases the unemployment(employment) rate of females
substantially. However, this pattern is not evident for males.

2Because the first report of the infection came from Spain, who did not take part in World
War I, and apparently had an uncensored media, the epidemic was called the Spanish flu.
Spanish flu was known as one of the deadliest pandemics in human history, and the largest of
all pandemics during the 20th century.

3An additional reason for choosing Sweden is that the country remained neutral during the
First World War. Because the Spanish flu affected employment, the overlap with the time
of war makes it difficult to distinguish one effect from the other. Apart from being neutral,
Sweden was heavily affected by the 1918 outbreak of the influenza epidemic. Almost 1 percent
of the Swedish population (38,000 individuals) died from the Spanish flu.

4While prior studies focus on females, added workers could also be young males who enter
the labor force by interrupting their education. In the case of Sweden Karlsson et al. (2014)
find that minors entered the labor market.
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distinguish between two types of unexpected health shocks both related to the
outbreak of influenca. The first shock includes a change in the share of infected
people, which affects the amount of labor supplied by a single worker, while
the second shock on mortality covers changes in the size of population. Within
this framework, female participation is expected to react to the pandemic in
essentially two ways: a decrease in non-reported participation owing to the
illness, and an increase in participation due to the added worker effect, which
should predominantly affect married women. Using information of the number of
people infected, the number of infected who subsequently died and the number
of labor market participants, we examine household’s labor supply decisions
resulting from the illness-related loss in working time5. Furthermore, because
the flu is a transitory shock, with nearly no impact on expected wages or on
future employment opportunities, we address the added worker effect without
having to be concerned about discouraged workers. The discouraged worker
effect is thought to be important in the two recessions during our sample period.
Thus, we also compare the effects of the recessions with those of the flu.

Our results indicate the existence of an added worker effect during the time
of the Spanish flu. The pandemic increased females’ participation in Swedish
industry. However, this effect is not evident in subsequent waves of influenza
infections, during which predominantly males entered the labor market. Females
react to an increase in male participation by being absent from the labor market.
We observe a similar pattern throughout the sample period. Females consider
the labor supply decisions of males when deciding whether to enter the labor
market, but the reverse does not hold. By comparing the participation effects
during the Spanish flu with other periods, we find that during two recessions,
the economic crises in the early 1920s and the depression in the early 1930s,
females initially increased their participation as males retreat from the labor
force. Then, in subsequent years, the male participation recovered and females
left or stopped entering the labor market. Interestingly, during the period of
military preparedness (Beredskapstiden), females also entered the labor force
even though there was no significant decline in income to cause the added
worker effect. With these findings, we contribute to the existing literature in at
least three ways. First, we show that the added worker effect is a widespread
phenomenon in economic and non-economic crises. Second, we demonstrate that
participation decisions are not gender-neutral, and that females react on the
participation decisions of males. Third, we provide insight into the absorption
of shocks if essential instruments of social security, such as universal sick pay,
are missing.

At first glance, finding a significant added worker effect in different crisis
periods seems at odds with the findings of previous studies. Most empirical
paper conclude that the discouraged worker effect is stronger than the added

5Infected workers remain employed in our time series data, because a flu infection is short
if not accompanied by pneumonia. Therefore, being infected reduces working time rather than
participation in the labor market.
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worker effect. For instance Lundberg (1985) and Cain and Dooley (1976), using
data after the Second World War, find a relatively small added worker effect
that is overwhelmed by the discouraged worker effect. Only after the financial
and economic crisis in 2009, the most severe economic crisis since the Great
Depression, did studies begin to find a larger added workers effect. Bredtmann
et al. (2014), employing a discrete choice model, find that married women
whose husbands had lost their jobs had a higher participation rate than did
women whose husbands were still employed. In the aftermath of the crisis in
2009, Riedl and Schoiswohl (2015), using macroeconomic time series derived
from the European Labor Force Survey, find evidence of an increase in females’
participation of 0.5 percentage points. Using less disaggregated data, Jonung
and Roeger (2006) attribute a 0.2 percentage point increase in the employment
of married women with children to the added worker effect. Therefore, the
severity of a recession contributes to the size of the added worker effect, while
social protection limits the effect. Thus, in low- and middle-income countries,
the added worker effect should be higher than it is in high income countries
(Karaoglan and Okten, 2015; Parker and Skoufias, 2004).

Furthermore, by finding that female workers react to the labor market
participation decisions of males, we contribute to a series of recent publications
on the labor supply of women within a household context. Nicoletti et al. (2016)
find that females on unpaid maternity leave are sensitive to an employment
shock that affects male household members. Blundell et al. (2016) see family
labor supply decisions, outpacing other insurance mechanisms, as a major source
of insurance against wage shocks. Cullen and Gruber (2000) find evidence that
the generosity of unemployment insurance determines the spouses labor-supply,
namely the labor market participation decision of second-tier or added workers.
In addition to the findings of these studies, we find that females react less strongly
to macroeconomic shocks than do their male counterparts. This implies that
the observed high labor supply elasticities for females are essentially a reaction
to male labor supply decisions. They are not restricted to a downswings in the
economy or a reduction in wages.

Our paper is unique in that we are the first to address the added worker effect
in times of a severe health shock. With regard to the mortality rate, the Spanish
flu is considered one of the most severe diseases in Swedish history (Karlsson
et al., 2014). Worldwide, the flu infected an estimated 500 million people, a
third of the world’s population at the time. By the end of 1920, between 50 and
100 million people had died as a result. Despite the enormity of this outcome,
economic research on the consequences of such a pandemic is rather limited,
even though the occurrence of something similar is quite imaginable, as the less
severe Asian flu (1957 - 1958) and the Hong Kong flu (1968 - 1969) have shown.
Seasonal influenza may pose a risk of the emergence of a new form of the flu
virus. Given today’s global mobility, such a virus may spread quickly around
the world. In 2009, the world feared the so-called swine-flu, the second outbreak
of a flu involving the H1N1 virus, after the 1918 pandemic. Fortunately, the
modified virus turned out to be less lethal than its predecessor. The World Bank
estimates that such a global influenza pandemic would cause a loss of 2 percent
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of the global GDP (Brahmbhatt, 2005). Given the differences in countries’ levels
of social protection, the impact might be much greater in developing countries.
Thus, our results emphasize the importance of female vocational education,
which would increase female labor force participation during crises, even if this
does not translate immediately into higher non-crisis participation rates. The
remainder of this paper is organized as follows. In the next section, we briefly
outline the theoretical model. The data and estimation strategy for this model
are described in section 3 and we discuss the empirical results in section 4. Lastly,
section 5 concludes the paper.

2. The Model

Following the standard new Keynesian framework, as expounded for example
in Clarida et al. (1999), Smets and Wouters (2003) and Christiano et al. (2005),
we develop and estimate a non-linear DSGE model. The novel characteristics of
our model are the presence of two kinds of labor, the imperfect substitutability
of male and female workers, and the presence of epidemic shocks that affect
aggregate labor.

2.1. Households
The economy is inhabited by a representative household that maximizes

its lifetime utility as a function of consumption and labor supply. The utility
function is separable in consumption cjt, and hours worked by males lj,m,t and
females lj,f,t.

maxE0

∞∑
t=0

βtdt

{
ln ct + ϕm,tψm

lj,m,t
1 + γm

+ ϕf,tψf
lj,f,t

1 + γf

}
, (1)

where E0 is the conditional expectation operator, ct is consumption, β is
the discount factor, and lm,t and lf,t denote the labor provided by males or
females, respectively. γm and γf are the inverse Frisch labor supply elasticities
of males and females, respectively, dt is an intertemporal preference shock, and
ϕf,t and ϕm,t are gender specific labor disutility shocks affecting females and
males, respectively.

In order to capture the aggregate risk, we assume that the household can
trade the whole set of Arrow-Debreu securities. Securities aj,t+1 pay one unit
of consumption in event ωj,t+1 purchased by household j at time t at price
qj,t+1,t. Households also hold an amount of bj,t of government bonds, which pay
a nominal gross interest rate Rt and physical capital, which is rewarded with rt
and is built-up according to the law of motion:

kj,t = (1− δ)kj,t−1 + xj,t.

The utility maximization in Equation (1) is subject to a sequence of intertem-
poral budget constraints:
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cj,t + xj,t + bj,t+1
pt

+
∫
qt+1,taj,t+1dωj,t+1,t (2)

= wm,tlj,m,t + wf,tlj,f,t + rj,tkj,t−1 +Rt−1
bj,t
pt

+ aj,t + Tt + Ft,

where wm,t and wf,t are the gender specific wage rates paid to the labor, rt
is the rental rate of capital, T is a lump-sum transfer, and Ft is the firm’s profit.
We further assume that a[1] = 0, a′ and a′′ > 0. The first order conditions for
this problem are

dtc
−1
j,t = λj,t, (3)

λj,t = βEt {λj,t,t+1} , (4)

qj,t = βEt

{
λj,t+1
λj,t

(1− δ) qj,t+1 + rt+1

}
, (5)

wj,m,t = dtϕm,tψml
γm
j,m,tλ

−1
j,t , (6)

wj,f,t = dtϕf,tψf l
γf
j,f,tλ

−1
j,t . (7)

2.2. Production of intermediate good firms
Intermediate goods producing firms use capital and labor for the production

of a homogeneous good. Following Card and Lemieux (2001), we use a nested
production function and assume that firms can choose to employ male and
female labor. The aggregate technology to produce goods is given by a linear
homogeneous production function:

yt =
[
αkφt + (1− α)lφt

] 1
φ

, (8)

where yt is output, kt is capital, Lt is aggregate labor, and φ = 1− 1
σKL

with
σKL being the elasticity of substitution between capital and labor. In line with
Borjas (2003), Ottaviano and Peri (2007), and Borjas et al. (2008), we assume
that σKL = 1, so that the CES function collapses to the Cobb-Douglas form
combining capital kt and aggregate labor lt:

yd,t = Atk
α
t l

1−α
t . (9)

The neutral technology process At is assumed to follow a random walk,
with drift At = At−1 exp (4A + zA,t) where 4A is the long-run growth rate
of technology and zA,t = σAεA,t involves a permanent shock to technology.
However, to obtain a stationary equilibrium, we adjust the model variables with
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the gross growth rate of technology µt, defined as µt = At
At−1

, with logµt =
logAt − logAt−1 = 4A + zA,t. 6

In the lower nest, labor lt is specified as a CES aggregate, containing male
lm,t and female lf,t labor:

lt =
{
ηl%m,t + (1− η)l%f,t

}1/%

, (10)

where η can be referred to as a distribution parameter denoting the share
of steady-state males and females, and % > 0 is the elasticity of substitution
between male and female labor. We can now derive the relation between male
and female labor as a function of wages, the distribution parameter, and the
elasticity of substitution:

lm,t
lf,t

=
(
wf,t
wm,t

)%(1− η
η

)%
, (11)

with aggregate wages

wt =
(
η

1
1−%w

− %
1−%

m,t + (1− η)
1

1−% w
− %

1−%
f,t

)− 1−%
%

(12)

and the relation between labor and capital as a function of partial elasticities,
aggregate wages, and interest on physical capital.

kt
lt

=
(
wt
rt

)(
1− α
α

)
. (13)

As it can be easily seen, the gender employed in the intermediate good sector
is determined by the wage differential between males and females, where the cost
of labor depends on the preferences of households providing either of those two
factors. The firm is a price taker in the labor market and the wage is determined
by the labor supply equation of households and reflects the disutility of labor.

Therefore, the profits of the firm are:

Ft = yt − ltwt
1

1− α.

2.3. Retail firms
There is a continuum of monopolistically competitive retailers on the unit

interval, indexed by i. Each retailer purchases goods from the intermediate
goods-producing firms and transforms them into a differentiated retail good
using a linear technology, which is then resold to the households. During each
period t = 0, 1, 2, . . . each retailer i sells Yt(i) units of the retail good at the

6In line with zero steady-state growth rate in our model, HP-filtered data are used for the
estimation .
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nominal price Pt(i). Let Yt denote the composite of individual retail goods which
is described by the CES aggregator of Dixit and Stiglitz (1977):

Yt =
[∫ 1

0
Yt(i)(ε−1)/εdi

]ε/(ε−1)

, (14)

where ε > 1 is the elasticity of substitution across the differentiated retail goods.
Then, the demand curve facing each retailer i is given by

Yt(i) =
[
Pt(i)
Pt

]−ε
Yt, (15)

and Pt is the aggregate price index

Pt =
[∫ 1

0
Pt(i)1−εdi

]1/(1−ε)

, (16)

for all t = 0, 1, 2, . . . . As in Calvo (1983), only a random and independent
fraction 1 − ν of the firms in the retail sector is allowed to set their prices
optimally, whereas the remaining fraction ν index their prices to the previous
period’s inflation by parameter χ ∈ [0, 1]. Hence, a retail firm i that can choose
its price in period t, chooses price P ∗t (i) to maximize

Et

∞∑
j=0

(βν)jβt,t+jλt+j

[(
Pχt−1

P ∗t (i)
Pt+j

)−ε
Yt+j

(
Pχt−1

P ∗t (i)
Pt+j

− ςt+j
)]

, (17)

where βt+j is the discount factor used by the firms and ςt is the real marginal
costs:

ςt =
(

1
1− α

)1−α( 1
α

)α
w1−α
t rαt . (18)

The first-order condition for this problem is

P ∗t (i) = ε

(ε− 1)

Et

∞∑
j=0

(βν)jβt,t+j(λt+jP εt+jYt+jςt+j)

Et

∞∑
j=0

(βν)jβt,t+j(λt+jP ε−1
t+j Yt+j)

. (19)

We follow Fernández-Villaverde (2010) solving this equation recursively
defining

g1,t ≡ βνEt
∞∑
j=0

(
Pχt+j
Pt+j+1

)−ε
+ (λt+jYt+jςt+j)

and
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g2,t ≡ βνEt
∞∑
j=0

(
Pχt+j
Pt+j+1

)1−ε(
P ∗t+j
P ∗t+j+1

)
g2,t+1 + (λt+jP ∗t+jYt+j),

which implies that εg1,t = (ε − 1)g2,t. For g1,t, g2,t to be well defined and
stationary, we need (βν)jβt,t+j to go to zero fast in relation to the rate of
inflation. In this case we can write g1,t, g2,t. As we assume Calvo’s price setting,
the price index evolves according to

1 = ν

(
pχt−1
pt

)1−ε

+ (1− ν)p∗
1−ε

t

.

2.4. The central bank
The central bank conducts monetary policy using a modified Taylor (1993)

rule:

Rt/R = (Rt−1/R)ΓR

((
Yt/Yt−1
4A

)Γy
(πt/π)Γπ

)1−ΓR

, (20)

where R, Y , and π are the steady-state values of the gross nominal interest
rate, output, and gross inflation rate. The degree of interest rate smoothing ΓR
and the reaction coefficients to inflation and output, Γπ and Γy, are assumed to
be positive.

The state deficit is assumed to be zero. Therefore, transfers follow the rule:

Tt =
∫ 1

0 mj,tdj

pt
−
∫ 1

0 mj,t−1dj

pt
+
∫ 1

0 bj,t+1dj

pt
−Rt−1

∫ 1
0 bj,tdj

pt
. (21)

The central bank in our model is able to control the target level of the
inflation rate only. The nominal interest rate Rt is beyond its control as it is
equal to the steady-state real gross returns of capital plus the target level of
inflation. If we apply the definition of transfers to the budget constraint we get:

ct + xt = wm,tlm,t + wf,tlf,t + rtkt−1 + Ft. (22)

2.5. Aggregation
External shocks that affect the population sh,t (i.e., mortality shocks) can

change the number of households and in turn the supply of labor. Likewise, if the
members of the household fall ill, they provide less labor or no labor at all. If all
household members die, the household ceases to exist. Therefore, both mortality
and morbidity shocks have similar but not identical consequences. A negative
morbidity shock that affects the provision of labor reduces consumption to a
lesser extent than the death of a household does. By normalizing the number of
households to one, we get the following conditions for aggregates:
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ct = sh,tcj,t, (23)

xt = sh,txj,t, (24)

ld,t = sh,tsi
−1
t lj,t, (25)

yt = sh,tyj,t. (26)
The share parameters, sh,t, affecting the number of households, and sl,t,

affecting the provision of labor are 1 in the steady-state and are subject to
stochastic shocks.

We can derive the good market equilibrium by equalizing the demand for
intermediate good producers with the supply of each firm:

Atk
α
i,t−1l

1−α
i,t = (ct + xt)

(
pi,t
pt

)−ε
. (27)

If we use the capital-labor ratio, which is equal among firms, and by inte-
grating out, we can use the Calvo price index to get:

ct + xt =
Atk

α
t−1l

1−α
t

vpt
(28)

with vpt = θp
π∗
t−1
πt

vpt−1 + (1− θp)π∗−εt as price distortion term.

2.6. Shocks
We formulate a set of random shocks including gender specific labor disutility

shocks, shock to the household preferences and population. The production
function is also assumed to be subject to a neutral technology shock. Finally,
the Spanish flu is postulated as a stochastic morbidity shock.

ϕm,t = ρωϕm,t−1 + σm,ωεm,ω,t εm,ω,t ∼ N(0, 1) (29)

ϕf,t = ρωϕf,t−1 + σf,ωεf,ω,t εf,ω,t ∼ N(0, 1) (30)

dt = ρddt−1 + σdεd,t εd,t ∼ N(0, 1) (31)

sht = ρshsht−1 + σshεsh,t εsh,t ∼ N(0, 1) (32)

µt = ∆A + σAεA,t εA,t ∼ N(0, 1) (33)

sit = ρsisit−1 + σsiεsi,t εsi,t ∼ N(0, 1), (34)
All shocks follow an autoregressive process of order 1 with a time constant

standard deviation σ and a time-varying component ε, representing the volatility
of the shock (Fernández-Villaverde and Rubio-Ramirez, 2007a).
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3. Estimation

In this section, we discuss the estimation of our DSGE model, the data we used,
the estimation strategy applied, and the selection of priors. Because we want to
cover the time of the Spanish flu in Sweden, between 1918 and 1920, we have to
rely on historical time-series data that are available at low frequency only. In
order to obtain greater precision in the estimation process, we decided to estimate
a non-linear model using pruning, based on second-order Taylor approximations.
We follow the literature in choosing priors to reflect the Swedish economy during
our sample period, specify them within their theoretical boundaries, and discuss
the results of the estimated posteriors.

3.1. Data

The annual time series we use to estimate our model start in 1915, three years
before the outbreak of the Spanish flu, and end in 1956, 35 years after the
complete departure of the flu shock. Using annual time-series has at least two
drawbacks. First, we observe a heap in mortality in the second half of 1918 and
at the beginning of 1919 (Figure 1), not in the whole year. This mutes the impact
of the shock because workers infected by the flu worked for several months and,
thus, are counted as employees. Second, setting up DSGE models using annual
frequency is unusual, because these models lose precision by deviating from the
steady state. By employing a second-order Taylor approximation, we can reduce
this effect.

Figure 1 on page 27 about here

The number of infected individuals treated by a doctor is used to estimate the
reduction in labor supply attributed to the flu. The data are extracted from
Sweden’s public health statistics for each year7. In Figure (2) we show the
structural trend of the time series of infected and treated people (in log form),
extracted using a one-sided HP filter. As expected, we identify a peak in the
infection rate in 1918. It is also evident that the number of people infected
develops dramatically during three years, 1918 to 1920. In the other years, the
number of flu infections fluctuate around a significant lower mean. An exception
is the time of the Second World War, when flu-driven doctoral visitations were
low. Furthermore, in the same figure, we contrast the development of flu-driven
doctoral consultations with the HP-filtered structural trends of female and male
employment, and note some correlation among the three time series.

Figure 2 on page 28 about here

7Sveriges officiella statistic- Allmän hälso- och sjukvård 1913-1956
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In summary, six time series are used in the estimation: the aforementioned series
of infected people and treated people, GDP, population, per-capita consumption,
and male and female employment (normalized by population) that approximates
gender specific labor supply. To capture the mortality aspect of the Spanish
flu in the labor force, we include population data. The Swedish labor statistics
in the industrial sector are used as the source of male and female employment.
These data are taken from the Historical Labor Database (HILD), provided by
the University of Gothenburg. We rely on employment data from the industrial
sector, because division by gender is unavailable for the other sectors. Therefore,
our description of the added worker effect is rather broad. It includes transitions
of female workers who are attracted by the decrease in the employment of
male employees. These female workers can be inactive, unemployed, or from
the agricultural/service sectors. The latter effect, however, seems to be quite
small. Bansak et al. (2012) examine the impact of economic downturns on
gender-related occupational segmentation in the United States between 1966 and
2010. They find that during recessionary phases, gender-related occupational
segmentation and gender dissimilarity increase. Thus, at least during recessions,
transitions from the agriculture and services sectors to the industrial sector are
not a significant concern. On the other hand, the advantage of restricting our
analyses to the industrial sector is that we rule out effects related to the structure
of occupations. Dissimilarities in gender labor market outcomes during recessions
are usually traced back to gender-related occupational choices (Goodman et al.,
1993; Engemann and Wall, 2010). In this sense, men are predominantly employed
in sectors that are heavily affected by economic crises, whereas females are usually
placed in occupations that are less cyclical, and subsequently, are more resistant
to recessionary effects (Rubery and Rafferty, 2013; Périvier, 2014; Wood, 2014).
The remaining time series are obtained from the portal for historical data on
Sweden (historia.se).

3.2. Estimation strategy
We simulate and estimate a non-linear DSGE model. The model solution is
computed using the perturbation technique and pruning, based on the second-
order Taylor approximation. More precisely, using perturbation methods, a
local approximation of the model’s solution is constructed by incorporating a
parameter scaling the variance of the exogenous shocks. For this purpose, we
apply an algorithm developed by Kim et al. (2008). The subsequent estimation
of the model is conducted using a Bayesian approach in which the likelihood is
evaluated with the non-linear particle filter8 (a sequential Monte Carlo method),
based on a second-order approximation of the model. We employ Bayesian
techniques because they have been implemented in a large and growing body of
empirical literature, owning to their important advantages in dealing with model
misspecification and identification problems (An et al., 2007). Our estimation is

8For a detailed technical discussion, see the Appendix.
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executed based on 3 parallel Markov chains of 100,000 draws and using a Monte-
Carlo based optimization routine. The scale factor for the jumping distribution’s
covariance matrix in the Metropolis-Hasting algorithm is adjusted in order to
capture a reasonable acceptance rate of roughly 30 percent.
The use of the particle filter relies on the requirements for the estimation of
non-linear models. The likelihood function of our non-linear model with non-
Gaussian shocks, a form of shocks subject to time-varying volatility, cannot be
computed using the traditional Kalman filtering methods, which are frequently
used to estimate models with Gaussian shocks9. Non-linear approximations of
DSGE models have several advantages over linear approximations of such models.
They allow us to capture the effects of uncertainty on economic decisions and to
study asymmetries of business cycles. In particular, the time-varying volatility
of the data, which is a fundamental issue in macroeconomics, cannot be attained
under the Gaussanity assumption of linearized models (Schmitt-Grohe and Uribe,
2004; Fernández-Villaverde, 2010; Ruge-Murcia, 2012). In addition, estimating
non-linear DSGE models delivers higher accuracy and substantially improves the
fit of the model to real-world data (Andreasen et al., 2013; Fernández-Villaverde
and Rubio-Ramírez, 2005).
We specify a series of observable equations in order to match the model variables
with our detrended time series. The detrended series are obtained from a one-
sided HP filter, applied to the logs of the six time-series used to estimate our
model. The one-sided HP filter is a regular filter based on a two-sided moving
average (Stock and Watson, 1999). To avoid stochastic singularity, six shocks are
included in the model to match the number of time series used in the estimation:
a technology shock, a preference shock, male and female labor disutility shocks,
a shock to population that covers the mortality of those infected by the flu, and
a flu morbidity shock. Each shock is specified as an AR(1) process.

3.3. Priors and posteriors

Using the above-mentioned time series, we are able to estimate 15 parameters and,
in line with the literature, calibrate a further six parameters. The depreciation
rate δ, labor disutility parameters of ϕm (for male worker) and ϕf (for female
worker) are calibrated and chosen in such a way as to match the averages of
the annual data on the investment to capital ratio, and the average share of
hours spent on work, respectively. The male worker share parameter of the
CES aggregate labor function η = 0.8 is inferred from the data on Swedish male
and female employment, and the fixed cost parameter Φ is assumed to be zero.
Moreover, following (Fernández-Villaverde, 2010), the elasticity of substitution
between goods varieties ε that is assumed to be invariant across countries and
time is set to 10. All other parameters can be identified and estimated. We
initialize the prior means of the discount factor β and the capital share α to

9The Kalman filter assumes that the posterior density at every time step is Gaussian.
Therefore, it can not describe a non-Gaussian density. In this case, the particle filter yields
great accuracy and efficiency (Fernández-Villaverde and Rubio-Ramírez, 2007b)
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match the average of the annual data on the long-term real interest rate and the
capital share of income, respectively. The prior mean for the Frisch elasticity
is acquired from a study by Jäntti et al. (2015) who analyze the labor supply
elasticity of the Swedish labor market. The prior means of the Taylor rule are
taken from the estimation conducted for the Riksbank, Sweden’s central bank
(Chappell and McGregor, 2014). In principle, using Taylor rules for determining
monetary policy in a time that is called the beginning of central banking is
tricky as the central banks during that time are not conducting monetary policy
in a modern sense (Friedman and Schwartz, 1963). Nevertheless, we follow
Orphanides (2003) who states that monetary policies during this time “appear to
be consistent with the key aspects of Taylor’s framework for interest-rate-based
policy analysis”.
Furthermore, we assume that 50 percent of firms readjust their nominal prices
in every period, which identifies the Calvo parameters prior mean ν to be 0.5.
In line with Smets and Wouters (2003), the remaining firms partially index their
prices to the lagged inflation using the indexation factor prior mean χ, set to
0.5. Lastly, the substitution elasticity of the prior mean of male and female
workers % is set to 1.8, because we assume these two groups of workers are
gross substitutes. Along with the parameters, we estimate the autoregressive
parameters and the standard deviations of the shocks. 1summarizes the choice
of priors and the posterior distribution of the estimated parameters, standard
deviations, means and the 90% credible interval. Following common practice, we
set the selected priors within their theoretical boundaries. Accordingly, the non-
negative parameters, such as the standard deviations of the shocks, are assumed
to have an inverse gamma distribution, and variables such as the persistence
parameters and the Calvo parameter, are bounded between 0 and 1, and are
supposed to follow a beta distribution. The remaining parameters, which are
unbounded, are presumed to be normally distributed. The β parameter is given
a gamma distribution. The standard deviations of the technology and labor
disutility shocks are set to have a mean 0.05 and standard deviation 1.0. The
standard deviations of the flu shock and the population shock are determined to
have a lower value. In addition, because we are using a New Keynesian model,
we follow Fernández-Villaverde (2010) in assigning a relatively large preference
shock.
The estimates of the posteriors are in line with those reported in the empirical
literature. In addition, comparing the prior and estimated posterior means
and the standard deviations of structural parameters indicates that our priors
are strongly identified and that, in general, our data is quite informative. As
expected, there is little information in the data for some parameters, such as
the Taylor rule coefficients for inflation and output. Furthermore, the share of
capital is estimated at a higher value compared to the prior. Compared to our
priors, the stochastic shocks all appear to be less volatile. Furthermore, the
estimated preference shock and the shock to the population seem to be more
persistent. The estimated mean volatility of the male and female labor disutility
shocks deliver much higher values than those we assigned to the corresponding
priors, yet their autoregressive coefficients are estimated at lower means. The



15

estimates also yield a lower mean volatility and persistence of the flu morbidity
shock.

Table 1 on page 25 about here

4. Results

In this section, we discuss the impact of the shocks on male and female partici-
pation decisions, as well as on other key macroeconomic variables. Accordingly,
we first measure the contributions of the shocks to the fluctuations of the models
variables using the variance decomposition for 1918. Second, we use the estimated
Bayesian impulse-response functions to discuss the model’s behavior in response
to health shocks. Next, to disentangle and study the historical contribution of
health shocks to the variance of the macroeconomic variables, we present the
historical decomposition.

4.1. Variance decomposition
We derive the conditional variance decomposition of the posterior mean for the
year 1918. Table 2 shows that the mortality shock contributes to nearly 20
percent of the variation in output, and that the morbidity shock contributes
nearly 19 percent. Both shocks explain over 90 percent of the variations in
aggregate employment. However, consumption is only slightly affected by the
flu shocks, contributing 2.5 percent to the variations in consumption, while
a preference shock, indicating a change in the time preference of households,
account for 89 percent. This implies that households de-save in order to keep
consumption stable. Similarly, the flu has only a slight effect on the labor supply
of households. The shock contributes 20 percent to the male labor supply and
14 percent to the female labor supply, while the labor disutility shock of males
accounts for 34 percent and that of females for 51 percent. Households seem
to adjust labor supply in order to cope with the flu shocks. This hints at the
existence of an added worker effect. However, it is surprising that, the male
labor supply is able to adjust by this amount. Karlsson et al. (2014) explains
this as an increase in the work of children and young adults.

Table 2 on page 26 about here

4.2. Impulse response functions
Figure (3) shows the median response of the model to one standard deviation
of the estimated flu morbidity shock, plotted with the highest posterior density
interval. The impulse response functions are calculated from a posterior sample of
100,000 draws. The flu shock directly affects aggregate employment by reducing
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the amount of work supplied by workers. Infected workers are still counted
as employed but provide less work. The reduction would have been higher if
additional workers did not enter the labor market. Male participation increases
by 0.25 percent and female participation by 0.2 percent. Thus, aggregate
employment is reduced by 1.2 percent. This translates into a decline in output
by 0.4 percent. Surprisingly, consumption is reduced by only 0.08 percent, which
implies that households limit their savings in order to keep consumption at a
high level.

Figure 3 on page 29 about here

Similar to the flu shock, an economic crises increases female and male labor
market participation (Figure 4). The reason for such a strong “added worker
effect” is the specific circumstances of the severe depression in Sweden between
1920 and 1923, when the country lost more than 37 percent of per capita GDP
and only reached the pre-crisis level again in 1939. Without generous social
protection, workers had to work to make a living. If we treat the economy with
a negative total factor productivity shock of one standard deviation, we see a
drop in GDP of 6 percent. Males increase their labor market participation by
0.5 percent and females by 0.4 percent. Consumption during this time increases,
revealing that deflationary tendencies did primarily affect savings and investment,
causing a drop in GDP.

Figure 4 on page 30 about here

A time preference shock (Figure 5) mainly affects consumption. Households
give a higher preference to consumption today rather than that of the future.
Following a positive preference shock, consumption increases by 5 percent. A
decrease in investment overcompensates for the increase in consumption and has
a depressing impact on GDP, reducing it by 0.4 percent instantly, and by up to
0.8 percent over the next three years. In contrast to the shock to total factor
productivity, households decrease their labor supply. This decrease is stronger
for males (1 percent) than it is for woman (0.7 percent).

Figure 5 on page 31 about here

Moreover, a positive labor disutility shock (Figure 6) decreases labor supplied
by male household members. A shock of one standard deviation decreases
participation by more than 6 percent. This translates into a decrease in aggregate
employment by less than 6 percent. The 0.5 percentage point difference between
male labor supply and aggregate employment is attributed to a more than 2
percent increase in female labor supply. The decrease in aggregate employment
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reduces GDP by 2 percent and per-capita consumption by around 0.4 percent.
This also shows the weak reaction of consumption to changes in GDP.

Figure 6 on page 32 about here␣

If we shock female disutility by one standard deviation (Figure 7), we see a
decrease in female labor supply by slightly less than 6 percent. As in the case of
a male disutility shock, added workers step in. However, the increase in male
labor supply by 0.1 percent is very weak. Aggregate Employment decreases by
0.2 percent and reduces GDP by 0.06 percent. Consumption shrinks by 0.015
percent.

Figure 7 on page 33 about here

4.3. Historical decomposition
The Figures (8),(9),(10) and (11) show the variations of the model variables with
respect to each of the six shocks in our model. These shocks are represented as
colored lines in the graphs. The black dashed line in every graph indicates the
deviation of the smoothed variable from its steady state.

Figure 8 on page 34 about here

The historical decomposition of GDP (Figure 8) shows the depressing impact
of the Spanish flu in 1918. The flu shock reduces GDP, while an increase in
labor supply mitigates this effect. Additionally, total factor productivity declines,
worsening the impact of the flu. Furthermore, we see that, starting with the flu
year, households shift consumption to the present. This effect exists even in the
two years where the GDP is recovering. In 1920 - 1921, the time preference shock
has a strong negative impact on GDP until it abates in 1928. Between 1920
and 1923, Sweden experiences a severe downturn. GDP per capita decreases
by 37 percent, and needs nearly twenty years before it reaches the pre-crisis
level again. In the first two years of the recession, the discouraged worker effect
dominated. The discouraged worker effect increases the disutility of workers
and, therefore, labor market participation. This effect accelerates the decrease
in GDP. However, in later years, the discouraged worker effect diminishes, and
the male added worker effect contributes to a recovery of GDP. Nevertheless,
the road to recovery is long. Then, in 1930 - 1931 another recession contracts
the GDP in Sweden, though to a lesser extent than the previous downturn. All
Nordic countries including Sweden were hit by the Great Depression to a lesser
extent than other industrialized countries.
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Figure 9 on page 35 about here

The historical decomposition of male labor supply (Figure 9) indicates a negative
impact of the Spanish flu on male labor provision. We see a harsh drop during
the initial shock phase in 1918 and 1919. In 1920, the male labor provision
increases and compensates for the loss of labor provision during the epidemic.
However, in 1921, a recession hits the Swedish economy, decreasing the labor
supply of males. We attribute the increase in disutility during this period to
a dominating discouraged worker effect. In the years after 1923, this disutility
decreases, and males provide more work. In addition, between 1932 and 1934
(the next recession), we see a negative impact of a drop in GDP on male labor
provision and a recovery between 1934 and 1936. From 1937 onward, the male
labor supply decreases. This period can be explained by the upcoming World
War II and the Beredskapstiden, a military service that trained feasible soldiers
to secure the borders and protect Sweden from invasion. After 1942, there is a
slight recovery in labor participation, which lasts till 1948. During this time, the
labor supply returns to its steady state level. After the war in 1945, we see an
increase in the labor supply, but between1948 and 1951, the labor participation
of males strongly decreases. The beginning of the 1950s is characterized by a
recovery.

Figure 10 on page 36 about here

In contrast to the male labor supply, after an initial decrease in the female
labor supply10 owing to the flu outburst in 1918, we observe an increase in the
female labor supply from 1918 to 1919 (Figure 10). However, in the years of the
economic depression, similar to male employment, female employment decreases
in reaction to a shrinkage of production and labor demand. During this period,
we also see that, similar to the time of the pandemic, the female labor supply
increases in reaction to a drop in the participation of males. Similar responses
can be seen over the whole sample period.
Similarly, subsequent to a decrease in the men labor force participation in
the time of pre-war preparations (Beredskapstiden) in 1936, we observe an
increase in female labor supply. During the war, from 1939 to 1945, we see a
considerable reduction in women’s participation, a time in which male labor
supply remains constant. This pattern may be explained by the enactment of a
law in Sweden in 1939, under which employed women could not be dismissed
by reason of pregnancy, childbirth, engagement, or marriage (Ruggie, 2014).
Similarly, following the introduction of paid leave in 1955, both male (though to
a lesser degree) and female labor supply decreased (Mason, ed, 1995).

10This mortality effect is somewhat stronger for women than for men. The gender distribution
of death by influenza in Sweden shows that from 1918 to 1920, more females in the working
population died from the flu than did males.
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Figure 11 on page 37 about here

Both males and females are affected by the flu outbreak in 1918 and reduce their
working hours (Figure 11). This leads to a negative impact of the health shock
on aggregate employment. It can be seen, that aggregate employment decreases
after the Spanish flu outbreak and that the reduction in aggregate labor is mainly
stirred by a male labor disutility shock. This is because the share of males in
the workforce is more than 80 percent. However, part of the reduction in the
male labor force during 1918 - 1919, the beginning of the recession in 1923 -
1927, and in the Great Depression (1936 - 1938) is compensated by an increase
in participation of women which alleviates the downward push to aggregate
employment. In this sense, female added workers enter the labor force in times
when discouraged male workers are absent. In those times, we see an increase in
disutility that affects male workers and reduces male labor supply. We interpret
this shock as the male discouraged worker effect dominating the male added
worker effect.

4.4. Business cycle properties
To assess the fit of the model to the data, we compare the theoretical moments
of the time series generated from a simulated benchmark DSGE model to the
empirical moments (Table 3). The variables and the data are expressed in
percentage deviations from the steady state. As shown, the model is able to
truly replicate the characteristics documented in the Swedish data. However,
the model generates slightly higher standard deviations and contemporaneous
correlations with GDP for variables of population and aggregate employment
than those observed in the data.

Table 3 on page 26 about here

4.5. Sensitivity analysis
As a robustness-check, we evaluate the sensitivity of our results to an alternative
specification of the Spanish flu shock. Accordingly, our model is estimated
using solely the number of people infected by influenza who subsequently died.
According to the available data, during the period 1911-195111, on average,
roughly 2 percent of infected people from influenza in Sweden died each year.
This value increased to nearly 6 percent during the 1918 – 1919 influenza
pandemic. The estimation results are summarized in Table (4) and the historical
decomposition of shocks in Figure (27), (28) and (29) of the Appendix. As

11The model is also estimated for the period 1911-1951
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shown, our results are quite robust across variants of the flu shock specification.
However, the added worker effect for males and females in times of a flu shock is
quite small. This implies that added worker primarily react on the illness of the
household head rather than on the relatively small number of deaths.

5. Conclusion

We estimate a non-linear DSGE model to analyze the impact of times of crises on
the labor market participation decisions of male and female household members
in Sweden during the period 1915 - 1956. In this time, female workers react less
to shocks than male workers do. Females react to male labor supply decisions,
while the corresponding male reaction to labor supply decisions of females is
nearly non-existent.
A decrease in the supply of male labor, caused by the Spanish flu, was followed
by an increase in female participation. Our results show that in the aftermath of
the Spanish flu outburst in 1918 and 1919, female labor supply upsurges, while
male labor supply declines. These results imply that succeeding a severe shock,
there is an inflow of inactive females to the labor market to substitute for the
absence or deficiency of males. In the literature, this phenomenon is called the
added worker effect. The entry of these women during the pandemic relieved
the downward push on the Swedish labor force triggered by a shortage of male
workers. Moreover, the response of females to a decline in male labor supply
was also observed at the beginning of two recessions, as well as shortly before
the Second World War, as Sweden prepared for an occupation and conscripted
young males. Depending on the size of the female participation on the one hand,
and the capacity of the economy to accommodate the new arrivals on the other
hand, the inflow of inactive women to the labor market increases the capability
of the economy to absorb different kinds of shocks and smooths macroeconomic
fluctuations. These findings not only reconcile with prior research on the impact
of health shocks and gender business cycles, but also add to the literature on the
added worker effect by bridging the existing gap between these areas of research.
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6. Tables and Figures

Table 1: Prior and posterior distributions of the estimated parameters
Description Prior distribution Posterior distribution

Parameter Density Mean Std. dev. Mean Std. dev. 10% 90%
Discount factor β Gamma 0.98 0.5e-2 0.98 2.4e-5 0.97 0.99
Capital share α Normal 0.30 0.10 0.66 0.003 0.59 0.72
Calvo parameter ν Beta 0.50 0.10 0.48 0.01 0.36 0.60
Male inverse Frisch elast. γm Normal 3.47 0.10 3.45 0.01 3.32 3.58
Female inverse Frisch elast. γf Normal 4.29 0.10 4.31 0.002 4.25 4.37
Male-female substitution elast. % Normal 1.80 0.10 1.64 0.10 1.52 1.76
Taylor rule output Γy Normal 0.06 0.01 0.06 9.4e-5 0.05 0.07
Taylor rule inflation ΓΠ Normal 0.25 0.05 0.25 0.002 0.19 0.31
Taylor rule interest rate ΓR Normal 1.10 0.25 1.31 0.03 1.11 1.53
Autorregressive coefficients of shocks
Technology Λµ Beta 0.002 0.001 0.002 9.6e-09 0.002 0.002
Preference ρd Beta 0.50 0.10 0.59 0.005 0.49 0.68
Male labor disutility ρϕ Beta 0.50 0.10 0.39 0.007 0.28 0.50
Female labor disutility ρϕf Beta 0.50 0.10 0.46 0.007 0.35 0.56
Flu morbidity ρsi Beta 0.50 0.10 0.38 0.007 0.27 0.49
Population ρsh Beta 0.50 0.10 0.55 0.009 0.42 0.67
Standard deviations of shocks
Technology exp(σµ) Inv gamma 0.05 1.0 0.06 6.3e-05 0.05 0.07
Preference exp(σd) Inv gamma 0.10 2.0 0.06 6.4e-05 0.06 0.08
Male labor disutility exp(σϕ) Inv gamma 0.05 1.0 0.26 9.0e-04 0.23 0.30
Female labor disutility exp(σϕf ) Inv gamma 0.05 1.0 0.22 6.0e-04 0.19 0.25
Flu morbidity exp(σsi) Inv gamma 0.05 0.5 0.01 2.2e-06 0.01 0.02
Population exp(σsh) Inv gamma 0.05 0.5 0.01 3.8e-07 0.006 0.008
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Table 2: Variance decomposition
Observable variable Pref. shock Male

disutility
shock

Female
disutility
shock

Tech.
shock

Population Flu morb.
shock

Output 13.5 1.4 0.0 47.5 19.3 18.4
Consumption per-capita 89.0 0.2 0.0 8.3 0.4 2.1
Male labor supply 45.8 33.7 0.0 1.0 2.2 17.3
Female labor supply 29.7 6.4 50.6 0.6 1.4 11.2
Aggregate employment 4.6 3.1 0.0 0.1 52.4 39.8

Table 3: Unconditional moments
Observable variable Std. dev. Corr. with output

Data Model Data Model
Output 0.10 0.10 1.000 1.000
Consumption per capita 0.12 0.13 0.82 0.70
Population 0.004 0.07 0.20 0.40
Male labor supply 0.06 0.03 -0.31 -0.14
Female labor supply 0.04 0.03 -0.09 -0.08
Aggregate employment 0.06 0.09 0.32 0.57
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Figure 3: Flu morbidity shock
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Figure 4: Negative neutral technology shock
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Figure 5: Preference shock
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Figure 6: Male labor disutility shock
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Figure 7: Female labor disutility shock

0 10 20 30 40
-1

-0.7

-0.4

-0.1
0

re
l. 

de
v.

 f.
 s

te
ad

y-
st

at
e

10-3 Production

0 10 20 30 40
-3

-2

-1

0

re
l. 

de
v.

 f.
 s

te
ad

y-
st

at
e 10-4 Consumption

0 10 20 30 40

-2

1

re
l. 

de
v.

 f.
 s

te
ad

y-
st

at
e 10-3 Aggregate emoloyment

0 10 20 30 40
0

0.5

1

1.5

re
l. 

de
v.

 f.
 s

te
ad

y-
st

at
e 10-3 Male labor supply

0 10 20 30 40
-0.1

-0.06

-0.02

0.02

re
l. 

de
v.

 f.
 s

te
ad

y-
st

at
e

Female labor supply



34
F
igure

8:
H
istoricaldecom

position
ofoutput

-0.4

-0.3

-0.2

-0.1 0

0.1

0.2

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

Preference
M

ale disutility
Fem

ale disutility
Technology

Flu m
orbidity

O
uput



35
F
igure

9:
H
istoricaldecom

position
ofm

ale
labor

supply

-0.2

-0.15

-0.1

-0.05 0

0.05

0.1

0.15

0.2

0.25

0.3

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

Preference
M

ale disutility
Fem

ale disutility
Technology

Flu m
orbidity

M
ale labor supply



36
F
igure

10:
H
istoricaldecom

position
offem

ale
labor

supply

-0.2

-0.15

-0.1

-0.05 0

0.05

0.1

0.15

0.2

0.25

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

Preference
M

ale disutility
Fem

ale disutility
Technology

Flu m
orbidity

Fem
ale labor supply



37
F
igure

11:
H
istoricaldecom

position
ofaggregate

em
ploym

ent

-0.2

-0.15

-0.1

-0.05 0

0.05

0.1

0.15

0.2

0.25

0.3

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

Preference
M

ale disutility
Fem

ale disutility
Technology

Flu m
orbidity

Aggregate em
ploym

ent



38

7. Appendix

In this section we present the estimated posteriors shapes, the Stephen P. Brooks
and Andrew Gelman (1998) convergence statistics for our Markov Chain Monte
Carlo (MCMC) procedure as well as the results of our sensitivity analysis that we
did not present in the main part of this paper for the sake of brevity. Additionally,
more in-depth information is given on Bayesian estimation and pruning.

7.1. Posterior distributions
The estimated posterior distributions plotted along with the posterior mode
and prior distributions of the structural parameters are displayed in Figure
12, 25 and 26. Distinct priors and posteriors indicate that the data is fairly
informative (except for Taylor rule parameters that cannot be predicted through
our data). It is also observed that the posterior distributions (solid black line)
display a normal form. In addition, they are not unreasonably different from
prior distributions (gray solid line). Moreover, the posterior modes correspond
to the peak of the posterior distributions (green dashed line).

7.2. Monte Carlo Markov Chain (MCMC) convergence
MCMC univariate and multivariate convergence diagnostics (proposed by Stephen
P. Brooks and Andrew Gelman, 1998), which are commonly applied as diagnostic
tools for assessing the convergence of the posterior distribution, are plotted in
the Figures 15 to 25and in Figure 26. Through this procedure, we compute and
compare the between-chain and within-chain variance of the sample mean, and
a fraction within a certain confidence interval of the simulated draws for each
parameter (univariate convergence diagnostics). Then, we do the same for all the
parameters together (multivariate convergence diagnostics) over all generated
MCMC sequences/chains. Upon the convergence of the Markov chains, these two
calculated inferences are supposed to be equal. Accordingly, the figures below
clearly suggest that all three measures of the parameters’ moments (including the
80 percent interval, and the second and third moments) are horizontally stable
and converging within (represented by the red line) and between (represented by
the blue line) the chains. As also shown, the multivariate convergence is attained
after less than 10,000 iterations. In general, the results confirm the validity of
our estimates.

7.3. Sensitivity analysis
To test the sensitivity of our model with regard to the flu shock, we replaced

the morbidity and mortality shocks with a single mortality shock. In the regular
run, the morbidity shock clearly outpaces the mortality shock, as only a minority
of infected eventually die. We see that the death of infected clearly reduces
aggregate employment (Figure 29) but has only a minor impact on the labor
supply of males (Figure 27) and females (Figure 28). The sensitivity analyses,
therefore, seems to confirm that the added worker effect is foremost a reaction
on the illness related decline in labor provision of the partner.
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7.4. Bayesian estimation
In the Bayesian approach, the posterior distribution of the model’s parameters
is characterized based on the priors and the data. According to Bayes’ theorem,
the posterior distribution of the structural parameters is computed as:

p(θ | y) = L(y | θ)p(θ)∫
L(y | θ)p(θ)dθ ∝ L(y | θ)p(θ),

where p(θ) is the prior density of the parameter vector θ, and
∫
L(y | θ)p(θ)dθ

is the marginal likelihood of y .
A Markov Chain Monte Carlo (MCMC) Metropolis-Hastings (MH) algorithm is
employed to draw random chains of parameters θi from the posterior distribution
under the assumption of normality:

θi = N(θi−1, σΩ),

where Ω is the inverse of the Hessian of the posterior kernel, computed at the
posterior mode, and σ is a scaling parameter denoting the variance of the jumps
within the MCMC chains.
As we apply a non-linear model, the likelihood function L(y | θ) is evaluated
by the sequential Monte Carlo filter (Particle filter) proposed by Fernández-
Villaverde and Rubio-Ramírez (2005).

7.5. Pruning
In the following, an algorithm developed by Kim et al. (2008) for generating
the second order approximation to the solution to a DSGE model using the
perturbation method and pruning is briefly described.12

The model is assumed to take the general form as:
Kn×1(wtn×1, wt−1n×1, σεtm×1) + Πσηtp×1 = 0, (35)

where Etηt+1 = 0 and Etεt+1 = 0, wt is a vector of variables of the model,
including control and predetermined state variables, εt is exogenous innovations,
and ηt is a function of εt at the solution of the model, provided that the solution
exists and is unique. σ is the scale factor or perturbation parameter that scales
the square root of the covariance matrix Ω for εt.
The second-order Taylor expansion of the model around the steady-state w̄ reads
as follows:

K1ijdwjt = −K2ijdwj,t−1−K3ijσεjt + Πijηjt, (36)

−1
2(K11ijkdwjtdwkt + 2K12ijkdwjtdwk,t−1 + 2K13ijkdwjtσεkt

+K22ijkdwj,t−1dwk,t−1 + 2K23ijkdwj,t−1σεkt +K33ijkσ
2εjtεkt),

where array Kmij refers to the first derivatives and array Kmnijk refers to the
second derivatives.
The equation can be transformed to the following equations:

12All equations drawn from Kim et al. (2008)
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dyit = G1ijdxjt +G2ijdvj,t−1 +G3ijσεjt (37)

+ 1
2(G11ijkdvjtdvkt + 2G12ijkdvjtdvk,t−1 + 2G13ijkdvjtσεkt

+G22ijkdvj,t−1dvk,t−1 + 2G23ijkdvj,t−1σεkt +G33ijkσ
2εjtεkt),

J1ijdxjt = J2ijdxj,t−1 + J3ijσεjt + Π ∗ ηt (38)

+ 1
2(J11ijkdvjtdvkt + 2J12ijkdvjtdvk,t−1 + 2J13ijkdvjtσεkt

+ J22ijkdvj,t−1dvk,t−1 + 2J23ijkdvj,t−1σεkt + J33ijkσ
2εjtεkt),

where dv = [dy, dx].
The solution to the model is subsequently given by:

yt = F (yt−1, xt−1, σεt, σ) (39)

xt = h(yt, s), (40)

for the state variables yt and the control variables xt.
The second-order expansion of the solution is written as:

dyit = F1ijdvj,t−1 + F2ijσεjt + F3iσ
2 (41)

+ 1
2F 11ijkdvj,t−1dvk,t−1 + 2F12ijkdvj,t−1σεkt + F22ijkσ

2εjtεkt (42)

dxit = 1
2M11ijkdyjtdykt +M2σ

2. (43)

From Equation 42 we see that dyt is quadratic in dyt−1, so dyt+1 is quadratic in
dyt and so forth, which successively leads to explosive time paths. However, a
stable solution can be captured using the pruning method, in which the terms in
the solution that have higher-order effects than the approximation order are left
out (pruned). In this method, the second order terms are computed based on a
first-order expansion. As a result of this adjustment, for all s, dŷt+s is quadratic
in dyt:

dy
(2)
t+s=̇F1jdy

(2)
j,t+s−1 + F3σ

2 (44)

+ 1
2F11jk(dy(1)

j,t+s−1dy
(1)
k,t+s−1 + Σ̂k−1,jk) + σ2

2 F22jkΩjk

dx
(2)
t+s=̇

1
2M11jk(dy(1)

j,t+sdy
(1)
k,t+s + Σ̂s,jk) +M2σ

2 (45)

dy
(1)
t+s=̇F1jdy

(1)
j,t+s−1 (46)

Σ̂ij,s = σ2F2ikΩklF2jl + F1ikΣ̂kl,s−1F1jl, (47)

where (1) and (2) in the powers respectively denote the first and second order
accurate solutions.
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Table 4: Prior and posterior distributions of the estimated parameters (sensitivity check)
Description Prior Distribution Posterior Distribution

Parameter Density Mean Std. Dev. Mean Std. Dev. 10% 90%
Discount factor β Gamma 0.98 0.5e-2 0.98 2.4e-5 0.97 0.99
Capital share α Normal 0.30 0.10 0.66 0.003 0.59 0.72
Calvo parameter ν Beta 0.50 0.10 0.49 0.01 0.36 0.60
Males inverse Frisch elast. γm Normal 3.47 0.10 3.44 0.01 3.32 3.58
Females inverse Frisch elast. γf Normal 4.29 0.10 4.31 0.002 4.25 4.37
Male-female substitution elast. % Normal 1.80 0.10 1.64 0.10 1.52 1.76
Taylor rule output Γy Normal 0.06 0.01 0.06 9.4e-5 0.05 0.07
Taylor rule inflation ΓΠ Normal 0.25 0.05 0.25 0.002 0.19 0.31
Taylor rule interest rate ΓR Normal 1.10 0.25 1.31 0.03 1.11 1.53
Autorregressive coefficients of shocks
Technology Λµ Beta 0.002 0.001 0.002 9.6e-09 0.002 0.002
Preference ρd Beta 0.50 0.10 0.59 0.005 0.49 0.68
Male labor disutility ρϕ Beta 0.50 0.10 0.39 0.007 0.28 0.50
Female labor disutility ρϕf Beta 0.50 0.10 0.45 0.007 0.35 0.56
Flu mortality ρsi Beta 0.50 0.10 0.49 0.007 0.27 0.49
Population ρsh Beta 0.50 0.10 0.54 0.009 0.42 0.67
Standard deviations of shocks
Technology exp(σµ) Inv gamma 0.05 1.0 0.07 6.3e-05 0.05 0.07
Preference exp(σd) Inv gamma 0.10 2.0 0.07 6.4e-05 0.06 0.08
Male labor disutility exp(σϕ) Inv gamma 0.05 1.0 0.28 9.0e-04 0.23 0.30
Female labor disutility exp(σϕf ) Inv gamma 0.05 1.0 0.23 6.0e-04 0.19 0.25
Flu mortality exp(σsi) Inv gamma 0.05 0.5 0.01 2.2e-06 0.01 0.02
Population exp(σsh) Inv gamma 0.05 0.5 0.01 3.8e-07 0.006 0.008

7.6. Tables and figures
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Figure 12: Prior and posterior distributions
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Figure 13: Prior and posterior distributions
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Figure 14: Prior and posterior distributions
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Figure 15: MCMC Univariate Convergence Diagnostics / Discount factor and male Frisch
elasticity
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Figure 16: MCMC Univariate Convergence Diagnostics / Elasticity of substitution and female
Frisch elasticity
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Figure 17: MCMC Univariate Convergence Diagnostics / Calvo and Taylor rule interest rate
coefficient
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Figure 18: MCMC Univariate Convergence Diagnostics / Taylor rule output and inflation
coefficient

2 4 6 8 10

104

0.022

0.024

0.026

0.028

0.03
Interval

2 4 6 8 10

104

0.8

1

1.2

1.4
10-4 m2

2 4 6 8 10

104

1

1.5

2

2.5
10-6 m3

2 4 6 8 10

104

0.1

0.12

0.14

0.16
Interval

2 4 6 8 10

104

2

2.5

3

3.5
10-3 m2

2 4 6 8 10

104

1.5

2

2.5

3
10-4 m3

Taylor rule output

Taylor rule inflation



7.6 Tables and figures 49

Figure 19: MCMC Univariate Convergence Diagnostics / Share of capital and preference shock
persistence

2 4 6 8 10

104

0.11

0.12

0.13

0.14
Interval

2 4 6 8 10

104

1.5

2

2.5

3

3.5
10-3 m2

2 4 6 8 10

104

1

1.5

2

2.5

3
10-4 m3

2 4 6 8 10

104

0.16

0.18

0.2

0.22
Interval

2 4 6 8 10

104

4

5

6

7
10-3 m2

2 4 6 8 10

104

4

5

6

7

8
10-4 m3

Share of capital

Preference shock persistence parameter



7.6 Tables and figures 50

Figure 20: MCMC Univariate Convergence Diagnostics / Disutility shock persistence
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Figure 21: MCMC Univariate Convergence Diagnostics / Morbidity and population shock
persistence
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Figure 22: MCMC Univariate Convergence Diagnostics / Persistence of technology shock
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Figure 23: MCMC Univariate Convergence Diagnostics / Standard deviation technology and
preference shocks
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Figure 24: MCMC Univariate Convergence Diagnostics / Standard deviation disutility shocks
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Figure 25: MCMC Univariate Convergence Diagnostics / Standard deviation flu and population
shocks
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Figure 26: MCMC Multivariate Convergence Diagnostics
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