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Abstract

We generalize the concept of the natural rate of interest (Laubach and Williams, 2003;

Woodford, 2003) by defining and estimating the the natural yield curve (NYC) - the

term structure of natural interest rates. Our motivation stems i.a. from the observation

that at times when central banks attempt to directly affect long-term interest rates (e.g.

via quantitative easing) the gap between the short-term real and natural rate is no more

a good indicator of the monetary policy stance. We estimate the NYC on US data,

document its main properties and show i.a. that in the period 2008-2011 the NYC

allows to better capture the US monetary policy stance than the short-term natural

rate.
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1 Introduction

Since its introduction to economics in the late XIXth century (Wicksell, 1898), the natural

rate of interest (NRI) has noticed up and downswings of popularity. The recent revival of

interest in the NRI concept was related to the introduction of inflation targeting by several

prominent central banks in the 1990’s. In this strategy monetary authorities control the

short-term interest rate in order to stabilize inflation at the targeted level. As a consequence

the concept of an equilibrium level of the short-term interest rate that stabilizes the economy

(and inflation) received much attention both from the theoretical (Woodford, 2003) and

empirical (Laubach and Williams, 2003) points of view.

Despite its obvious attractiveness, the NRI also has some deficiencies. First, it is an

unobservable variable, with all consequences for its measurement and uncertainty surround-

ing its estimates. While this does not diminish its appeal as a theoretical concept, it may

undermine its practical usage by policymakers (Orphanides and Williams, 2007). Second,

the NRI always provoked confusion as to what maturity it should be applied. For Wicksell

the natural rate was a long-term concept (Amato, 2005). This notion can be also found in

the contemporaneous literature, e.g. Bomfim (2001). However, most recent studies approach

the NRI from the short-term perspective, in line with the character of the operational target

of many central banks (e.g. Crespo Cuaresma et al., 2004; Garnier and Wilhelmsen, 2005;

Brzoza-Brzezina, 2006; Mesonnier and Renne, 2007; Edge et al., 2008; Andrés et al., 2009).

While ultimately, whether the NRI is treated as a long or short-term concept is simply a

matter of definition, this duality does certainly not help the NRI’s popularity and under-

standing. Finally, the developments following the financial crisis 2007-09 changed the way

central banks look at their policy instruments. After hitting the zero lower bound on interest

rates several central banks (e.g. the Fed, Bank of England, ECB) decided to engage in so

called unconventional monetary policies. A primary example is quantitative easing intro-

duced by the Fed. One important goal of this policy was to lower long-term interest rates.

This means that central banks went beyond their traditional policy of affecting directly only

the short end of the yield curve (with some exceptions like the Twist operation in the US

in the 1960’s). It should be noted here, that while central banks’ impact on longer-term

rates has been particularly pronounced since the outbreak of the financial crisis, even before

policymakers were actively using communication tools in order to influence the yield curve

(e.g. Blinder et al., 2008).

While obviously not much can be done against the first deficiency, our contribution is

to deal with the latter two. To this end we generalize the NRI concept by defining a new

unobservable variable - the natural yield curve (NYC). Our definition is a direct analogue

to Laubach and Williams (2003) NRI definition - the gap between the real and natural yield
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curves determines the output gap, which in turn determines inflation. In particular, when

the yield curve gap is closed, so becomes the output gap and inflation stabilizes. As a result

we obtain the whole natural yield curve, which nests natural rates of various maturities.

Even more importantly, the NYC (and the associated yield curve gap) provide a synthetic

measure of policy restrictiveness, particularly usefull at times when central banks attempt

to directly affect the longer end of the yield curve. The latter is our main motivation to

develop and estimate the NYC.

In addition to the natural rate research our study is directly related to two strands

in the literature. The first is yield curve modeling. Our empirical approach must rely

on a parsimonious representation of the (real) yield curve. A number of approaches has

been developed that allow for modeling the yield curve as a function of a small number of

parameters. One of them are affine models usually with the no-arbitrage restriction imposed.

These models have been originally proposed by Duffie and Kan (1996) and further developed

by Duffee (2002) (for the classification of the affine models see also Dai and Singleton, 2000).

Due to the no-arbitrage restriction affine models have been mostly used for derivative pricing,

however some studies applied them for analysing the relationships between macroeconomic

variables and the yield curve as well (Rudebusch and Wu, 2008). The second group of

models originates from the decomposition of the yield curve proposed by Nelson and Siegel

(1987) and extended by Svensson (1994) and Christensen et al. (2009). The Nelson-Siegel

approach allows to describe the yield curve with a small number of latent factors, which

due to certain restrictions imposed on their loadings, can be interpreted as a long, medium

and short-term factor (often called level, curvature and slope)1. Despite the absence of the

no-arbitrage restriction these models match the yield curve quite well and are widely used by

many institutions (i.a. central banks) for yield curve modeling (BIS, 2005). In our research

we rely on the specification of Nelson and Siegel (1987). Not only does it model relatively well

our real yield curves, but also, as will be explained later, greatly facilitates the identification

of the NYC.

The second strand are macro-financial models that link the yield curve to macroeconomic

developments. These describe the joint dynamics of bond yields and macroeconomic variables

i.a. by means of structural (e.g. Rudebusch and Wu, 2008) or VAR (e.g. Ang and Piazzesi,

2003, Diebold et al., 2006) models. The general conclusion is that relationships work in

both ways - macroeconomic developments affect the yield curve, which in turn affects the

macroeconomy. However, in contrast to our research, these models do not incorporate any

latent macroeconomic variables, in particular no measures of equilibrium interest rates.

Our model is estimated on US data for the period 1q1983 - 2q2011. Main findings are as

1Svensson (1994) adds a second curvature factor to improve the goodness of fit and Christensen et al.
(2009) incorporate a second slope factor to impose the no-arbitrage restriction.
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follows. First, our approach allows to estimate the natural yield curve. Second, the related

yield curve gap matters for the output gap and inflation. Third, it shows features that make

it potentially more valuable than the traditional short-term interest rate gap. In particular

it is able to document the accommodative stance of monetary policy after the financial crisis.

The rest of the paper is structured as follows. Section 2 describes the data and presents

the yield curve and macroeconomic models. Section 3 discusses the estimation and Section

4 concludes.

2 Model and data

Our modeling approach is based on two steps. First, we describe the yield curve as function

of three latent factors.2 Next, we use these factors as observables in our macroeconomic NYC

model. This allows to estimate the latent macroeconomic variables - potential output and

the natural yield curve. A two-step estimation procedure means that we loose on efficiency.

However, the big number of latent variables (level, slope, curvature, the natural slope and

potential output) as compared with a relatively small number of observable variables (in-

terest rates, GDP and inflation) would make the one-step joint estimation very complicated

numerically. Given this estimation procedure, we also describe the two models separately.

2.1 The Nelson-Siegel model

As mentioned in the Introduction, several methods of modeling the yield curve are available.

We choose the Nelson-Siegel approach for two reasons. First, since our purpose is macroe-

conomic rather than financial market oriented, we are ready to trade off some precission in

modeling the curve against simplicity of the model and the economic interpretation of the

parameters. Second, as explained in section 2.2 the Nelson-Siegel model provides a natural

and intuitive identifying restriction that allows us estimate the NYC. The yield curve is

modeled as a function of three unobservable factors. The functional form is:

rτ,t = Lt + St

(
1− e−λτ

λτ

)
+ Ct

(
1− e−λτ

λτ
− e−λτ

)
(1)

where rτ,t is the spot interest rate of maturity τ . Lt, St and Ct are the level, slope and

curvature factors respectively and λ is a constant that governs the exponential rate of decay

of the loadings.

2We decided not to add a second curvature factor as proposed by Svensson because it helps to fit the
longer end of the yield curve while we use maturities up to 10 years only which can be matched by one
curvature factor. Moreover it would be difficult to find a clear economic interpretation for this factor.
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This model has been extensively documented in the literature and hence, we discuss it

only briefly here. In order to give some intuition behind the way the Nelson-Siegel function

works, in Figure 1 we present the loadings associated with the three factors. The loading on

the first factor is constant. Hence, it affects all interest rates proportionally and so determines

the curve’s level. The loading on the second factor affects short rates more than long rates

and hence determines the slope of the yield curve. The last factor is hump-shaped which

means that it exerts the largest impact on medium-term rates. As a consequence it allows

to model the curvature of the yield curve.

Nelson and Siegel show that equation (1) is appropriate for modeling nominal yield curves.

In particular it explains over 90% of their variability. In Section 3.1 we document that it

performs well in modeling the real yield curve as well.

2.2 The natural yield curve model

We model the natural yield curve as an analogue to Laubach and Williams’ modeling of the

natural rate of interest. The core of the model are two standard macroeconomic equations,

the IS curve and the Phillips curve. The former is:

xt = Ax(L)xt−1 + AG(L)GAPt−1 + ε1t (2)

where xt denotes the output gap (i.e. xt ≡ yt− y∗t , where yt and y∗ stand for output and

potential output respectively), GAPt is the yield curve gap to be defined below, Ax(L) and

AG(L) are polynomials in the lag operator and ε1t is a serially uncorrelated error term.

The Phillips curve takes the form:

πt = Bπ(L)πt−1 +Bx(L)xt−1 + ε2t (3)

where πt denotes the inflation rate, Bπ(L) and Bx(L) are polynomials in the lag operator

and ε2t is a serially uncorrelated error term.

Further, we assume that potential output follows an autoregressive process:

y∗t = y0 + Cy(L)y∗t−1 + ε3t (4)

where y0 is a constant, Cy(L) is a polynomial in the lag operator and ε3t is a serially

uncorrelated error term. The assumed properties of the lag operators (whether they imply

stationarity or unit roots in the underlying series) are discussed in the estimation section.

Finally, the definition of the yield curve gap must be given. We define GAPt as the area

between the real and natural yield curves. Following the discussion in section 2.1 we have:
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GAPt ≡
∫ T

0

(rτ − r∗τ ) dτ (5)

= (Lt − L∗t )T + (St − S∗t )
∫ T

0

1− e−λτ

λτ
dτ + (Ct − C∗t )

∫ T

0

1− e−λτ

λτ
− e−λτdτ

where r∗τ is the spot natural interest rate of maturity τ , L∗t , S
∗
t and C∗t are the level, slope

and curvature of the NYC and T is the maturity horizon taken into account. Unfortunately,

such a definition of the gap does not allow for the unique identification of L∗t , S
∗
t and C∗t . To

see this note that for any given Lt, St and Ct there is an infinite number of combinations of

the natural level, slope and curvature that yield the same value of GAPt. In other words, for

any given real curve there is an infinite number of natural curves such that the area between

the two remains the same. This means that we have to impose two additional identifying

restrictions in order to uniquely pin down the NYC.

The first restriction is based on the assumption that in the very long run the instantaneous

forward real rate equals its natural counterpart. In other words we assume that infinitely far

in the future investors’ best guess about the short-term real rate is its natural level. This

can be written as:

lim
τ→∞

rfτ,t = lim
τ→∞

rf∗τ,t (6)

where rfτ,t and rf∗τ,t are respectively the instantaneous real and natural forward rates. In

the Nelson and Siegel (1987) model the forward curve can be written as:

rfτ,t = Lt + Ste
−λτ + Ctτe

−λτ (7)

so that assumption (6) yields the restriction Lt = L∗t . Here we see an important reason for

choosing the Nelson-Siegel model for describing the yield curve - it provides us with a simple

and intuitively appealing restriction that greatly facilitates the estimation of the NYC. Note

that this restriction yields another interpretation of our identifying assumption - the central

bank cannot influence very (infinitely) long-term real spot interest rates.3

The second restriction assumes that the curvature of the NYC is constant. This is in

turn motivated by the fact, that in the literature macroeconomic factors are found not to

affect the curvature of the yield curve (see Diebold et al., 2006). However, the curvature

could be affected by the central bank aiming for instance at flattening the yield curve after

having hit the zero lower bound. If the curvature is affected rather by monetary policy than

by macroeconomic developments we can assume that the curvature of the natural curve is

3This follows the observation derived from (1) that Lt = lim
τ→∞

rτ
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constant over time.4

Finally, we have to assume a process for the evolution of our remaining latent variable

S∗t . Following the literature on the natural interest rate we assume that this variable follows

an AR(1) process:

S∗t = ρsS
∗
t−1 + ε4t (8)

where ε4t is a serially uncorrelated error term. Thus we do not force the natural slope

to be a random walk process. We allow for the more general AR(1) process and we test the

level of integration later on.

2.3 Data

We estimate the model on the basis of quarterly US data starting in 3q1983 and ending in

2q2011 (114 observations). Nominal interest rates for various maturities have been drawn

from the St. Louis FED database. We used the yields on T-Bills for maturities of 3 and 6

months and yields on zero-coupon and fixed-coupon Treasury Bonds for 1, 2, 3, 5, 7 and 10

years maturity. Due to substantial gaps in the data we skipped the longer-term maturities

of 20 and 30 years. Hence, in our application T = 40 (measured in quarters).

The purpose of our project is to estimate the real yield curve so we had to adjust the

nominal interest rates for inflation expectations first. We used the estimates of inflation

expectations for selected maturities provided by the Cleveland FED database as calculated

by Haubrich et al. (2008).

As a measure of inflation we took the CPI core inflation measure calculated by the BLS

(CPI inflation less food and energy). Using this index instead of CPI allows to adjust inflation

for the shocks not directly related to the domestic output gap. The level of GDP at constant

prices has been taken from the BEA database. Both macroeconomic variables: core CPI and

GDP were seasonally adjusted.

3 Estimation

As noted before, we conduct the estimation in two steps. In the first stage we estimate

the yields-only dynamic Nelson-Siegel (DNS) model. From the DNS model we calculate the

estimates of three factors, which can be interpreted as level, slope and curvature. In the

second step we use these factors as the observable variables in the NYC model.

4Sometimes humps on the yield curve may result from the lack of liqudity or inefficiency of the market.
This, however, does not seem to be the case for the US T-bonds market.
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3.1 The Nelson-Siegel model

The dynamic Nelson-Siegel model can be expressed in state space form. We follow Diebold

et al. (2006) and estimate the DNS model simultaneously using the Kalman Filter. The

alternative approach proposed by Diebold and Li (2002) relies on the estimation of the

decay parameter λ with OLS for the cross-sectional data and then on the derivation of the

level, slope and curvature with λ given from the first step as a mean or median calculated

over time. Diebold et al. (2006) argue that the one-step method is superior to the two step

approach.5

The block of measurement equations consists of the stochastic version of (1) for τ =

1, 2, 4, 8, 12, 20, 28 and 40:

rτ,t = Lt + St

(
1− e−λτ

λτ

)
+ Ct

(
1− e−λτ

λτ
− e−λτ

)
+ ετ,t (9)

The state equations form a VAR(1) process: Lt − µL
St − µS
Ct − µC

 =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


 Lt−1 − µL
St−1 − µS
Ct−1 − µC

+

 ξ1t

ξ2t

ξ3t

 (10)

where µL, µS and µC denote the means of the respective factors. The model can be

written in compact form with measurement equations expressed as

rt = Λft + εt (11)

and the state equations as

(ft − µ) = A(ft−1 − µ) + ξt (12)

where ft =

 Lt

St

Ct

, rt =
[
r1,t r2,t r4,t r8,t r12,t r20,t r28,t r40,t

]′
, µ =

 µL

µS

µC

.

We assume that error terms in the measurement equations are not cross-corelated, but

allow for cross-correlation of the disturbances in the state equations. Moreover, we impose the

restriction of no correlation between error terms from the measurement and state equations

which is a common procedure in the estimation of the DNS model as a state space model

(see Diebold et al., 2006). Hence:

5Pooter (2007) reviews different strategies for estimation of DNS model examining both one-step and
two-step approaches.
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(
εt

ξt

)
∼ WN

[(
0

0

)
,

(
D 0

0 H

)]
,

where D is a diagonal matrix.

We estimate the model consisting of (11) and (12) by Maximum Likelihood using the

Berndt-Hall-Hall-Hausman (BHHH) algorithm with starting values drawn from Diebold et

al. (2006).6

The results are collected in Table 1. The first row presents the mean values of subsequent

factors as defined in (10). The mean of the level factor amounts to 0.0366. This value is very

close to the sample mean of the real yield on 10Y bonds, which is an empirical counterpart for

the level factor.7 The mean of the slope factor is negative and slightly lower then the sample

mean of the spread between 3-months and 10-years yields. The third factor is negative as

well and lower than its empirical counterpart.

As far as the persistence of the factors is concerned, the first factor is the most persistent

one with the autoregression coefficient equal to almost 0.99 (though significantly bellow

one). The curvature is less persistent (0.92) and the slope even less so (0.72). The high

persistence of the level factor and the lower persistence of slope and curvature is mostly

in line with empirical evidence (Gasha et al., 2010). Some of the off-diagonal elements of

the covariance matrix are statistically significant reflecting the contemporaneous relationship

between factors.

The estimate of the decay parameter λ equals 0.2255 (with standard error of 0.002).

This corresponds to 0.075 for monthly data, a number very close to the estimates reported

by Diebold et al. (2006) for nominal yields (0.077).

Figures 2, 3 and 4 show the level, slope and curvature factors together with their empirical

counterparts. The level factor and the real 10Y yield move together in a downward trend

across the sample. Nevertheless, there are some periods when the yield on the 10-years

bonds declined more than the level factor - in particular in the beginning of the 1990’s, in

the first half of the last decade and at the end of the sample (2010-2011). Still, the correlation

between the two series is very high (0.98).

6The discussion on numerical issues related to the estimation and calibration of the DNS model can be
found in Gilli et al. (2010)

7Following the literature (e.g. Diebold et al., 2006, Diebold and Li, 2002) we refer to empirical counterparts
of the estimated factors. From (1) we have lim

τ→∞
rτ,t = Lt and lim

τ→0
rτ,t − lim

τ→∞
rτ,t = St.

It follows that the closest empirical counterpart for the level factor is the longest available yield and for the
slope factor the difference between the shortest and longest yield. For our estimate of λ = 0.2255 these are:
r40,t = Lt + 0.11St + 0.11Ct and r1,t − r40,t = 0.78St − 0.01Ct. The empirical counterpart for the curvature
factor is in turn defined as the difference between twice the medium-term yield and the sum of short- and
long-term yields. This is 2r8,t − r1,t − r40,t = −0.08St + 0.39Ct.

These relations show that for the finite maturities the estimated slope and curvature factors would have
higher amplitudes and variances than their empirical counterparts.
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The correlation between the slope factor and its empirical counterpart is strong as well

(0.99). The slope factor has slightly higher volatility and the amplitude than the spread (by

construction, as pointed out in footnote 7) and the maxima and minima occur at the same

points in time.

The lowest but still high correlation can be observed between the curvature factor and

its empirical counterpart. The correlation coefficient equals to 0.98 and the curvature is also

more volatile than the combination of empirical yields.

The reported correlations do not differ significantly from the corresponding correlations

for nominal yields reported by Gasha et al. (2010), while Diebold et al. (2006) even indicate

lower correlations for slope and curvature (for the sample ending in 2000). Our conclusion

is that the DNS model is suitable for modeling the US real yield curve.

3.2 The NYC model

In the second step we estimate the natural yield curve model expressed by (2), (3), (4) and

(8). The fitted slope and curvature from the DNS model derived in the previous step are

used as observable variables. Again, it is convenient to put the model in state space form

and to use the Kalman Filter for estimation. We use four observable variables: inflation,

output, slope and curvature and two latent variables: natural slope and potential output. As

mentioned above we assume that the natural level of the real yield curve equals its current

level and that the natural curvature is constant. Hence, the only “natural” factor which has

to be estimated in this step is the natural slope.

In the measurement equations we specify the number of lags of dependent variables on

empirical basis. We find that two lags of both, the output gap and inflation are sufficient

to capture the dynamics of these variables. Moreover we impose the restriction on the

coefficients for lagged inflation in the Phillips curve to sum to one, implying a unit root in

the inflation series. The yield curve gap in the IS curve and the output gap in the Phillips

curve enter both with one lag.

As far as the state equations are concerned we assume that potential output follows an

AR(2) process imposing again a unit root via the restriction on the autoregressive parameters

to sum to one. The natural slope is assumed to follow an AR(1) process and the error terms

from all the equations are assumed to be neither auto- nor cross-corelated.

Regarding the “pile-up problem” raised by Stock and Watson (1998) we calibrate the

variance for potential output and natural slope, while other parameters are estimated by

Maximum Likelihood using the BHHH algorithm. Choosing the variance for the error term

in the potential output equation we used the estimates of potential output calculated by the

CBO as a benchmark. We did not have any benchmark for the natural slope so we set the
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variance in the natural slope equation slightly below the variance of the error term in the

analogous equation for the empirical slope derived from the DNS model.

Tables 2 and 3 collect the estimation results for the NYC model. The yield curve gap

proves statistically significant, entering the IS equation with a negative sign. It means that

if the real yield curve remains below the natural one the output gap increases.

The sum of the parameters for the own lags of the output gap is significantly below one

(the hypothesis that both coefficients sum to one has been rejected by the data at the usual

significance level).

As far as the Phillips curve is concerned the output gap lagged by one period enters the

equation with a positive sign, in line with economic theory. The output gap is statistically

significant at usual significance levels.

Analysing the state equations we see that the autoregressive coefficient in the natural

slope equation takes a value significantly below one. With the Wald test statistic we reject

the hypothesis that the natural slope follows a random walk. Moreover the ADF test for the

smoothed values of natural slope strongly rejects the unit root. The results for the potential

output equation let us conclude that potential output is integrated of order one. The Wald

test does not support the hypothesis of a second unit root in the potential output series.

Figure 5 presents smoothed values of the natural slope together with appropriate standard

errors. According to the results the slope of the natural yield curve reaches its local maxima

in 1989, 1998 and in 2006. Minima occur in 1992, 2002 and recently since 2008 lasting till

the end of the sample.

Figure 6 shows the estimate of potential output and Figure 7 presents the comparison

of the output gap calculated from the NYC model with the output gap published by the

Congressional Budget Office (CBO). It can be seen that the NYC output gap matches CBO’s

estimates quite well with only two exceptions: the late 1990s, when the NYC model shows

a smaller positive output gap and the recent global crisis, when the CBO negative output

gap is deeper than the gap from the NYC model. In particular, the latter result can be

explained by the fact that our output gap is identified via the Phillips curve on the basis

of the behaviour of core inflation. Despite a deep and long lasting recession core inflation

did not fall substantially due to exchange rate depreciation and the NYC model identified a

smaller output gap.

In contrast to the output gap, there is no external benchmark for the yield curve gap.

We document its relationship with macroeconomic variables on Figures 8 and 9. The former

shows the estimates of the yield curve gap together with our output gap led by 8 quarters.

The correlation between these variables is clearly visible and amounts to 0.46. The second

figure shows the yield curve gap and core inflation led by 9 quarters Here the correlation is

slightly weaker but still significant and equals -0.26. All in all, our estimates seem to match
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economic theory.

The historical values of the natural yield curve have been presented on Figure 10.

4 The natural yield curve vs. the natural interest rate

In Section 3.1 we have shown our estimated natural yield curve, output gap and yield curve

gap, and how they are related to macroeconomic variables. Now it is time to concentrate on

the question whether estimating the whole natural yield curve improves upon the (possibly

simpler) estimation of the short-term natural interest rate.

Using our estimates of the natural level, slope and curvature we can calculate the natural

interest rate of any desired maturity. This, by itself, is an advantage of the NYC over the

narrowly defined NRI. In particular we can calculate the natural level for the short-term

(3-months) real rate, corresponding to the natural interest rate as defined by Laubach and

Williams (2003).

On Figure 11 we present the estimates of the 3-months real rate gap (the difference

between the 3-month real and natural rates) and the yield curve gap. Both indicators can

be interpreted as alternative measures of the monetary policy stance. A positive value of

the gap indicates restrictive monetary policy, a negative one corresponds to accommodative

monetary policy.

The behaviour of the yield curve gap shows that monetary policy was expansionary in

the years 1983-89, since 1992 till the end of the 1990s (with the exception for some quarters

in 1994/95) - covering the dot-com bubble period, between 2003 and 2004 and since the

mid-2009 till the sample end. Clearly restrictive monetary policy can be identified in the

years 1989-91, 1994-95, the beginning of the last decade (2000-2002) and since 2005 till 2009.

As mentioned before, the crucial difference between both measures is that the short-

term real rate gap does not take into account the longer end of the yield curve, which may

be meaningful for economic agents in the decision making process. For the most of the

sample the two estimates match relatively well. This is also confirmed by the relatively high

correlation coefficient (0.57). Still, for some periods substantial divergence can be observed.

In particular at the end of the sample the short-term rate gap differs from the yield curve

gap. According to the short-term rate gap since 3q2007 till the end of the sample monetary

policy was restrictive. Due to the strongly negative output gap and low inflationary pressure

the short-term real rate which would balance the economy should have been significantly

lower than it was. As is well known, this could, however, not be achieved because of the zero

lower bound problem.

Instead of lowering the short term rate, the Fed launched the programme of quantitative

easing (two phases) purchasing commercial papers and longer-term Treasury bonds. The
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programme allowed to lower the longer end of the yield curve decreasing the cost of long-

term financing and in fact making monetary policy more accommodative. This effect can

be observed from the yield curve gap turning negative since 3q2009. Thus, the measure

covering the whole yield curve defines the monetary policy stance more appropriately than

the short-term rate gap only, which indicates restrictive monetary policy in this period.

The advantage of looking at the yield curve gap instead of relying on the short-term rate

gap only can be better understood by looking at Figure 12. This shows the natural and real

yield curves for specific dates. For example in 3q2003 (panel a) the Fed managed to raise the

policy rate above the natural short-term rate. However, the longer end of the yield curve was

still below the natural one, so that monetary conditions remained accommodative, leading

to an overheating of the economy. According to our model, monetary conditions became

restrictive only in 2006-07 (panel b), when the yield curve gap became positive.

After the collapse of Lehman Brothers, in spite of lowering the policy rate almost to

zero, monetary policy remained restrictive as measured by both, the short-term rate gap

and the yield curve gap (1q2009 - panel c). Yet, the introducing of the QE programme led

to a substantial lowering of the longer part of the yield curve making monetary conditions

accommodative. According to the NYC model, monetary policy was most accommodative

in 1q2010 (panel d). In contrast, the short end of the yield curve remained above its natural

level in that period.

The zero lower bound problem and the implementation of non-standard monetary policy

instruments like quantitative easing highlight some limitations for the short-term rate gap

as a measure of the monetary policy stance. In our view the yield curve gap concept may

fill this gap.

5 Conclusions

In this paper we define and estimate a new equilibrium concept in monetary economics -

the natural yield curve (NYC). This can be seen as the whole term structure of natural

rates of interest (NRI), which are a popular concept both in academia and at central banks.

We motivate our innovation as follows. First, the NRI always provoked confusion as to

what maturity it should be applied. While for several authors (including Knut Wicksell,

its founder) it was a long-term concept, most recent studies approached the NRI from the

short-term perspective. Our approach generalizes the NRI and allows for the calculation of

short, medium and long-term natural rates.

Second, the usual argument for approaching the NRI from the short-term perspective was

related to the fact that central banks control short-term interest rates. Hence, the respec-

tive NRI provides an important benchmark for their policies. However, the developments
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following the financial crisis 2007-09 changed the way central banks look at their policy

instruments. After hitting the zero lower bound on interest rates several central banks ex-

tended their traditional operational policy framework and started to exert influence on the

longer end of the yield curve. From this perspective the gap between the short-term real and

natural rates of interest looses some appeal as a measure of the monetary policy stance. On

the contrary, the gap between the real and natural yield curves becomes more appealing.

Using a framework similar to Laubach and Williams (2003) we show how to estimate

the NYC on US data. We show that the gap between the real and natural curves has an

impact on the output gap and inflation. Furthermore we demonstrate how, in contrast to

the short-term interest rate gap, our gap is able to document the expansionary stance of the

Fed’s monetary policy during and after the financial crisis.
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Tables and Figures

Table 1: Estimation results for DNS model
State Equations

Lt St Ct

µ
0.0366

(0.0085)
−0.0354
(0.0060)

−0.0276
(0.0040)

Lt−1
0.9885

(0.0270)
−0.0582
(0.0433)

−0.1591
(0.0696)

St−1
0.0851

(0.0259)
0.7228

(0.0441)
−0.0755
(0.0755)

Ct−1
−0.0661
(0.0215)

0.2568
(0.0406)

0.9232
(0.0593)

Residual Covariance Matrix
Lt St Ct

Lt
8.53 · 10−6

(9.57 · 10−8)
8.46 · 10−6

(1.47 · 10−6)
5.97 · 10−6

(2.30 · 10−6)

St
2.47 · 10−5

(2.71 · 10−6)
3.16 · 10−7

(3.61 · 10−6)

Ct
6.00 · 10−5

(8.96 · 10−7)
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Table 2: Estimation results for the NYC model - measurement equations
IS Curve Phillips Curve

Output Gapt Core CPIt

Output Gapt−1
0.644

(0.014)
0.104

(0.001)

Output Gapt−2
0.286

(0.003)
-

Curve Gapt−1
−0.0498
(0.0003)

-

Core CPI t−1 -
0.880

(0.087)
Core CPI t−2 - 0.120

Residual Variance 2.61 · 10−5 5.63 · 10−6

Table 3: Estimation results for the NYC model - state equations
Natural Slope Equation Potential Output Equation

Natural Slopet Potential Outputt

Natural Slopet−1
0.932

(0.004)
-

Potential Outputt -
1.271

(0.022)
Potential Outputt - −0.271

Const -
0.005

(0.0003)
Residual Variance 3.72 · 10−5 7.50 · 10−6
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Figure 1: Loadings in the Nelson-Siegel model
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Figure 2: The level factor and its empirical counterpart
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Note: the empirical counterpart is the real 10-year yield. For explanation see footnote 7.

Figure 3: The slope factor and its empirical counterpart
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Note: the empirical counterpart is the spread between the 3-month and 10-year yield. For

explanation see footnote 7.
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Figure 4: The curvature factor and its empirical counterpart
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Note: the empirical counterpart is the difference between twice the 2-year yield and the sum of the

3-month and 10-year yields. For explanation see footnote 7.

Figure 5: The natural slope
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Figure 6: Potential output
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Figure 7: Estimates of the output gap from the NYC model and CBO’s output gap
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Figure 8: Yield curve gap vs. output gap
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Figure 9: Yield curve gap vs. core inflation
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Figure 10: The natural yield curve
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Figure 11: Yield curve gap vs. short term rate gap
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Figure 12: Real and natural yield curves
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