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Abstract

This document explains how to use this Toolkit for solving Value function problems in Matlab.
The toolkit is written to be applicable to as wide a range of problems as possible. It is based on
value function iteration on a discrete state space and by default utilizes parallelization on the
GPU and on multiple CPUs.

The toolkit is available for download from vfitoolkit.com.
If you want to get straight into using the Toolkit, look briefly at Sections 2 and 3, and then

go to Examples 10.1 and 10.2 on how to solve the Stochastic Neo-Classical Growth Model and
a Basic Real Business Cycle Model respectively. If you are already familiar with the Stochastic
Neoclassical Growth Model and Basic Real Business Cycle Model you can skip to looking at the
codes implementing them. The toolkit also contains a few codes for finite horizon value function
problems, see Example 10.3.

As a rough guide to see some more complicated models that you can solve with this toolkit
are see my paper, joint with Javier Dı́az-Giménez and Josep Pijoan-Mas, on Flat-Tax Reforms
(draft is available on my website, robertdkirkby.com). The method of moments estimation, and
calculating the transition paths of this general equilibrium heterogeneous agent model, are some
of the more advanced capabilities of this toolkit.
Note: This document undergoes periodic revision.
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The 1950s were not good years for mathematical research. We had a very interesting gentleman
in Washington named Wilson. He was secretary of Defense, and he actually had a pathological
fear and hatred of the word research. Im not using the term lightly; Im using it precisely. His face
would suffuse, he would turn red, and he would get violent if people used the term research in his
presence. You can imagine how he felt, then, about the term mathematical. The RAND Corporation
was employed by the Air Force, and the Air Force had Wilson as its boss, essentially. Hence, I
felt I had to do something to shield Wilson and the Air Force from the fact that I was really doing
mathematics inside the RAND Corporation. What title, what name, could I choose?
— Richard Bellman, on the origin of his term dynamic programming (another name for value
function iteration) (1984)

1 Introduction

Economists often have reason to solve value function problems. This Matlab Toolkit is intended
to make doing so easy. It is likely to be faster than value function iteration codes written by a
beginner it will obviously never be as fast as codes written by someone with substantial experience
— there are always aspects of a specific problem that can be exploited to produce faster codes. The
Toolkit does take advantage of parallelization on the GPU (without requiring any understanding
by the user of how and why this works). This Toolkit, and value function iteration generally, is
most useful for problems where the first-order conditions of the problem are not both necessary
and sufficient, and so methods like perturbation are not usable; ie. it is most useful when your
value function problem is not the kind that can be solved by Dynare.

The value function iteration commands in this toolkit are designed to be easy to use. In the case
of inifinite horizon value functions the toolkit require you to define as inputs the return function,
the grids, the transition matrix for the exogenous shocks, and the discount factor. The toolkit then
does all of the work of solving the value function iteration problem for you and as outputs gives the
value function and the optimal policy function. In particular the toolkit can handle any number
of variables (speed and memory permitting). Behind the scenes the Toolkit takes advantage of
Howards improvement and parallelization on the GPU. The GPU makes a large difference and so
the Toolkit (and documentation) assumes by default that you have and will be using the GPU.

The method used to solve value function iteration problems is pure discretization of the state
space.

As well as the main value function iteration commands (which can also solve Epstein-Zin pref-
erences) the other main commands are to simulate time series and to calculate the stationary
distribution (mainly of use in heterogeneous agent models).

There are many commands in the toolkit that have not yet been documented; if you are feeling
adventurous feel free to browse around the contents of the Toolkit. 1

The VFI Toolkit is also be available directly from github:
https://github.com/vfitoolkit

1Among other things there are finite-horizon value function codes and simulating time series; but all need improv-
ing/cleaning/documenting and many have not yet been adapted to take advantage of the GPU.
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1.1 Why use value function iteration?

While slower than many other numerical methods it has a number of advantages. The main one is
their widespread applicability/robustness. Value function iteration can be used to solve problems
in which the first-order conditions are not necessary and sufficient. Economic examples include:
when borrowing constraints bind, buying durable goods (large indivisible goods), and means-tested
benefits.2

Their other main strength is their accuracy (Aruoba, Fernandez-Villaverde, and Rubio-Ramirez,
2006). The cost of using value function iteration is that it is slower than other numerical methods,
although parallelization on the GPU has substantially reduced this penalty (Aldrich, Fernandez-
Villaverde, Gallant, and Rubio-Ramirez, 2011). If there are many variables or large grids then the
code can be very slow, or even that the matrices (in particular the return fn matrix) may simply
become to large to be held in memory.

From the theoretical perspective they also have the advantage that their convergence properties,
including dealing with numerical errors, are well understood.

A further possible disadvantage is that they are not always easy to implement with state space
veriables that are non-stationary.

1.2 Examples and Classic Papers

To provide examples of how to use the toolkit in practice a number of examples (model and code) are
provided. Going through these provides probably the easiest way to learn to use the toolkit (while
providing a bonus lesson in macroeconomics ;). Two main examples, the Stochastic Neoclassical
Growth Model and the Basic Real Business Cycle are describe and shown in Section 10, and the
codes are available at github.com/vfitoolkit/vfitoolkit-matlab-examples. Also available are codes
replicating some classic Macro papers (you will need to read the original papers alongside the
codes), these can be found at github.com/vfitoolkit/vfitoolkit-matlab-replication. The replications
of classic papers, as well as demonstrating the abilities and use of the toolkit, can also provide a
handy way to figure out which ’Case’ of the toolkit you need to use; just look for a classic paper in
the list of examples which contains a model with a framework similar to that you wish to implement.

1.3 What Can The Toolkit Do?

The following provides a rough listing of the main command types, although for anyone familiar
with the literature the best guide as to what the toolkit can do is just look at the list of the
examples, it gives an indication of the kinds of models which can be easily solved using the toolkit;

• ValueFnIter: Solves the discrete state space value function iteration problem giving the Value
Function and optimal policies.

• StationaryDist: Gives the stationary distribution associated with the model. The interpre-
tation of this stationary distribution will depend on the model. It may be a distribution

2Other popular methods, such as the perturbation methods used by Dynare require the first-order conditions to
be both necessary and sufficient.
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function for the steady-state (in a model with no aggregate uncertainty), a probability dis-
tribution for the asymptotic steady-state (in a model with aggregate uncertainty), or one of
a number of other things. See each Case for details.

• SimulateTimeSeries: IMPLEMENTED BUT NOT YET DOCUMENTED

• FiniteHorzValueFnIter: Solves the discrete state space finite-horizon value function itera-
tion problem giving the Value Function and optimal policies. IMPLEMENTED BUT YET
DOCUMENTED.

• HeteroAgentStationaryEqm: Used to find the equilibrium price levels for a Bewley-Huggett-
Aiyagari heterogeneous-agent model with no aggregate uncertainty.

• TransitionPath: Use to find general eqm transition path for a Bewley-Huggett-Aiyagari
heterogeneous-agent model with no aggregate uncertainty IMPLEMENTED BUT NOT YET
DOCUMENTED

• A variety of useful miscellaneous functions are also provided.

– TauchenMethod: Gives grid and transition function, inputs are parameters of an AR(1)
process. (Rouwenquist, and also a VAR(1) version of TauchenMethod also exist)

– StandardBusCycStats: Generates standard business cycle statistics from time series.
IMPLEMENTED BUT NOT YET DOCUMENTED. GPU NOT YET SUPPORTED.

1.4 Parallelization

By default the toolkit assumes you have a GPU and four or more CPUs. It then automatically
switches back and forth between these based on which typically works faster in practice.

If you wish to overrule the defaults you can use the ’parallel’ option, available in many of the
commands. If Parallel is set to zero the code will run without any parallelization. If Parallel is set
to 1 then codes will run on parallel CPUs (the ncores option controls how many CPU cores are
used). If Parallel is set to 2 the code will run in parallelized on the GPU.

To be able to use the option to parallelize on the GPU you need to install the CUDA toolkit
(GPU parallelization only works with NVIDIA graphics cards that support CUDA).

1.5 Details on the Algorithms

Roughly speaking it performs value function iteration on a discrete state space3. To handle multiple
dimensions it vectorizes them.

I am in the progress of producing some detailed documentation on how the toolkit solves value
function problems, meantime you can always just look at the codes or feel free to email me.

3The code used by Aldrich, Fernandez-Villaverde, Gallant, and Rubio-Ramirez (2011) and described at parallele-
con.com/vfi/ is similar, but not exactly the same, as the VFI algorithm used by the Toolkit.
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1.6 Theory Behind These Methods

For a discussion of the theory behind Value function iteration see SLP. For a discussion of solving
Value function iteration by discrete state space approximation see Burnside (2001), in particular
part 5.4.2; this also contains a discussion of how to choose grids.

2 Getting Started

To use this toolkit just download it and put the folder ’VFIToolkit’ on your computer. To be able
to call the commands/functions that make up the toolkit you have to add the ’VFIToolkit’ folder
to the ’path’s known to Matlab so that it can find them. There are two ways to do this: (i) in
Matlab use the ’Current Folder’ to navigate to where you have the ’VFIToolkit’ folder, right-click
on the ’VFIToolkit’ folder and select ’Add to path>Selected Folder and Subfolders’; (ii) add the
line addpath(genpath(′path/Toolkit′)) at the top of your codes, replacing path with whereever you
saved the ’VFIToolkit’ folder (if it is in the same folder as your code you can replace path with a
dot, ie. ./V FIToolkit).

Now that Matlab knows where to find the toolkit you are ready to go.

3 Infinite Horizon Value Function Iteration: Case 1

The relevant command is
[V,Policy] = ValueFnIter Case1(V0, n d, n a, n z, d grid, a grid, z grid, pi z,

ReturnFn, Parameters, DiscountFactorNames, ReturnFnParamNames, vfoptions);
This section describes the problem it solves, all the inputs and outputs, and provides some further
info on using this command.

The Case 14 infinite-horizon value function iteration code can be used to solve any problem that
can be written in the form

V (a, z) = max
d,a′
{F (d, a′, a, z) + βE[V (a′, z′)|a, z]}

subject to

z′ = π(z)

where
z ≡ vector of exogenous state variables
a ≡ vector of endogenous state variables
d ≡ vector of decision variables

notice that any constraints on d, a, & a′ can easily be incorporated into this framework by building
them into the return function. Note that this case is only applicable to models in which it is possible
to choose a′ directly; when this is not so Case 2 will be required.

4The description of this as case 1 is chosen as it coincides exactly with the definition of case 1 for stochastic value
function problems used in Chapter 8 & 9 of Stokey, Lucas & Prescott - Recursive Dynamic Economics (eg. pg. 260).
In their notation this is any problem that can be written as v(x, z) = supy∈Γ(x,z){F (x, y, z) + β

∫
Z
v(y, z′)Q(z, dz′)}
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The main inputs the value function iteration command requires are the grids for d, a, and z;
the discount rate; the transition matrix for z; and the return function F .

It also requires to info on how many variables make up d, a and z (and the grids onto which
they should be discretized). And it accepts an initial guess for the value function V 0 (if you have
a good guess this can make things faster).

vfoptions allows you to set some internal options (including parallization), if vfoptions is not
used all options will revert to their default values.

The forms that each of these inputs and outputs takes are now described in detail. The best
way to understand how to use the command may however be to just go straight to the examples;
in particular those for the Stochastic NeoClassical Growth model (Appendix 10.1) and the Basic
Real Business Cycle model (Appendix 10.2).

3.1 Inputs and Outputs

To use the toolkit to solve problems of this sort the following steps must first be made.

• Define n a, n z, and n d as follows. n a should be a row vector containing the number of
grid points for each of the state variables in a; so if there are two endogenous state variables
the first of which can take two values, and the second of which can take ten values then
na = [2, 10];. n d & n z should be defined analagously.

• Create the (discrete state space) grids for each of the d, a & z variables,
a grid=linspace(0,2,100)’; d grid=linspace(0,1,100)’; z grid=[1;2;3];
(They should be column vectors. If there are multiple variables they should be stacked column
vectors)

• Create the transition matrices for the exogenous z variables5

pi z=[0.3,0,3.0,4; 0.2,0.2,0.6; 0.1,0.2,0.7];
(Often you will want to use the Tauchen Method to create z grid and pi z)

• Define the return function. This is the most complicated part of the setup. See the example
codes applying the toolkit to some well known problems later in this section for some illus-
trations of how to do this. It should be a Matlab function that takes as inputs various values
for (d, aprime, a, z) and outputs the corresponding value for the return function.
ReturnFn=@(d,aprime,a,z) ReturnFunction AMatlabFunction

• Define the initial value function, the following one will always work as a default, but by
making smart choices for this inital value function you can cut the run time for the value
function iteration.
V0=ones(n a,n z);

• Pass a structure Parameters containing all of the model parameters.
Parameters.beta=0.96; Parameters.alpha=0.3;
Parameters.gamma=2; Parameters.delta=0.05;

5These must be so that the element in row i and column j gives the probability of going from state i this period
to state j next period. So each row must sum to one.
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• ReturnFnParamNames is a cell containing the names of the parameters used by the Re-
turnFn (they must appear in same order as used by the ReturnFn).
ReturnFnParamNames={’alpha’,’gamma’,’delta’}

• DiscountFactorNames is a cell containing the names of the discount factor parameter (it is
also used for ’exoticpreferences’ like Epstein-Zin).
DiscountFactorNames={’beta’}

That covers all of the objects that must be created, the only thing left to do is simply call the
value function iteration code and let it do it’s thing.
[V,Policy] = ValueFnIter Case1(V0, n d, n a, n z, d grid, a grid, z grid, pi z,

ReturnFn, Parameters, DiscountFactorNames, ReturnFnParamNames, [vfoptions]);

The outputs are

• V : The value function evaluated on the grid (ie. on a× z). It will be a matrix of size [na, nz]
and at each point it will be the value of the value function evaluated at the corresponding
point (a, z).

• Policy: This will be a matrix of size [length(nd) + length(na), na, nz]. For each point (a.z)
the corresponding entries in Policy, namely Policy(:, a, z) will be a vector containing the
optimal policy choices for (d, a).6

3.2 Some further remarks

• Models where d is unnecessary (only a′ need be chosen): set n d = 0 and d grid = 0 and
don’t put it into the return fn, the code will take care of the rest (see eg. Example 10.1).

• Often one may wish to define the grid for z and it’s transition matrix by the Tauschen
method or something similar. The toolkit provides codes to implement the Tauchen method,
see Appendix C

• There is no problem with making the transitions of certain exogenous state variables depen-
dent of the values taken by other exogenous state variables. This can be done in the obvious
way; see Appendix A. (For example: if there are two exogenous variables za & zb one can
have Pr(zbt+1 = zbj) = Pr(zbt+1 = zbj |zbt ) and Pr(zat+1 = zaj ) = Pr(zat+1 = zaj |zat , zbt+1, z

b
t ).)

• Likewise, dependence of choices and expectations on more than just this period (ie. also last
period and the one before, etc.) can also be done in the usual way for Markov chains (see
Appendix A).

• Models with no uncertainty: these are easy to do simply by setting n z = 1 and pi z = 1.

3.3 Options

Optionally you can also input a further argument, a structure called vfoptions, which allows you to
set various internal options. Perhaps the most important of these is vfoptions.parallel which can

6By default, vfoptions.polindorval = 1, they will be the indexes, if you set vfoptions.polindorval = 2 they will
be the values.
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be used get the codes to run parallely across multiple CPUs (see the examples). Following is a list
of the vfoptions, the values to which they are being set in this list are their default values.

• Define the tolerance level to which you wish the value function convergence to reach
vfoptions.tolerance=10ˆ(-9)

• Decide whether you want the optimal policy function to be in the form of the grid indexes
that correspond to the optimal policy, or to their grid values.
vfoptions.polindorval=1
(Set vfoptions.polindorval=1 to get indexes, vfoptions.polindorval=2 to get values.)

• Decide whether or not to use Howards improvement algorithm (recommend yes)
vfoptions.howards=80
(Set vfoptions.howards=0 to not use it. Otherwise variable is number of time to use Howards
improvement algorithms, about 80 to 100 seems to give best speed improvements.)

• If you want to parallelize the code on the GPU set to two, parallelize on CPU set to one,
single core on CPU set as zero
vfoptions.parallel=2

• If you want feedback set to one, else set to zero
vfoptions.verbose=0
(Feedback includes some info on how convergence is going and on the run times of various
parts of the code)

• When running codes on CPU it is often faster to input the Return Function as a matrix,
rather than as a function.
vfoptions.returnmatrix=0
(By default it assumes you have input a function. Setting vfoptions.returnmatrix = 1 tells
the codes you have inputed it as a matrix. When using GPU just ignore this option.)

• By default the toolkit assumes standard von-Neumann-Morgenstern preferences. It is possible
to overrule this and use ’exotic’ preferences instead, if you do this thenDiscountFactorNames
is used to pass the needed additional parameters names. For example, can use Epstein-Zin
parameters.
vfoptions.exoticpreferences=0

• When using graphics cards with single-precision floating point numbers7 I once had a problem
due to rounding errors, so that the ’Policy’ instead of containing all integer values contained
some numbers that were 10−15 away from being an integer. Setting this option to 1 forces
them all to round to integers. Typically this is unnecessary and in principle could cause
unintended errors, so is off by default.
vfoptions.policy forceintegertype=0

7NVIDIA deliberately handicap most gaming GPUs to single-precision so they can charge a higher price for
’scientific computing’ GPUs with double-precision floating point numbers.
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3.4 Some Examples

Example: Stochastic Neoclassical Growth Model

Example: Basic Real Business Cycle Model

4 Infinite Horizon Value Function Iteration: Case 2

The Case 28 code can be used to solve any problem that can be written in the form9

V (a, z) = max
d
{F (d, a, z) + βE[V (a′, z′)|a, z]}

subject to

z′ = π(z)

a′ = φ(d, a, z, z′)

where
z ≡ vector of exogenous state variables
a ≡ vector of endogenous state variables
d ≡ vector of decision variables

notice that any constraints on d, a, & a′ can easily be incorporated into this framework by building
them into the return function. While a′ = φ(d, a, z, z′) is the most general case it is often not very
useful. Thus the code also specifically allows for φ(d, z, z′) and φ(d).

4.1 Preparing the model

To use the toolkit to solve problems of this sort the following steps must first be made.

1. Define n a, n z, and n d as follows. n a should be a row vector containing the number of
grid points for each of the state variables in a; so if there are two endogenous state variables
the first of which can take two values, and the second of which can take ten values then
na = [2, 10];. n d & n z should be defined analagously.

2. Create the (discrete state space) grids for each of the d, a & z variables,
a grid=linspace(0,2,100)’; d grid=linspace(0,1,100)’; z grid=[1;2;3];
(They should be column vectors. If there are multiple variables they should be stacked column
vectors)

8The description of this as case 2 is chosen as it coincides exactly with the definition of case 2 for stochas-
tic value function problems used in Chapter 8 & 9 of Stokey, Lucas & Prescott - Recursive Dynamic Economics
(eg. pg. 260). In their notation this is any problem that can be written as v(x, z) = supy∈Γ(x,z){F (x, y, z) +

β
∫
Z
v(φ(x, y, z′), z′)Q(z, dz′)}

9The proofs of SLP do not allow φ to be a function of z but this can be done; eg. Bertsekas (1976) provides the
finite-horizon results.
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3. Create the transition matrices for the exogenous z variables10

pi z=[0.3,0,3.0,4; 0.2,0.2,0.6; 0.1,0.2,0.7];
(Often you will want to use the Tauchen Method to create z grid and pi z.)

4. Define the return function matrix. This is the most complicated part of the setup. See the
example codes applying the toolkit to some well known problems later in this section for some
illustrations of how to do this. It should be a Matlab function that takes as inputs various
values for (d, a, z) and outputs the corresponding value for the return function.
ReturnFn=@(d,a,z) ReturnFunction AMatlabFunction

5. Pass a structure Parameters containing all of the model parameters.
Parameters.beta=0.96; Parameters.alpha=0.3;
Parameters.gamma=2; Parameters.delta=0.05;

6. ReturnFnParamNames is a cell containing the names of the parameters used by the Re-
turnFn (they must appear in same order as used by the ReturnFn).
ReturnFnParamNames={’alpha’,’gamma’,’delta’}

7. DiscountFactorNames is a cell containing the names of the discount factor parameter (it is
also used for ’exoticpreferences’ like Epstein-Zin).
DiscountFactorNames={’beta’}

8. Define, as a matrix, the function φ which determines next periods state. The following one
is clearly trivial and silly, see the example codes applying the toolkit to some well known
problems later in this section for some illustrations of how to do this.
Phi aprime=ones(n d,n z,n z);
In practice the codes always use Phi aprimeKron as input. See Appendix AAA (unwritten)
on how Kron variables relate to the standard ones.
Define Case2 Type. This is what tells the code whether you are using
Case2 Type = 1: φ(d, a, z′, z)
Case2 Type = 2: φ(d, z′, z)
Case2 Type = 3: φ(d, z′)
Case2 Type = 4: φ(d, a)
Case2 Type = 5: φ(a′|d, e′)
You should use the one which makes φ(·) the smallest dimension possible for your problem
as this will be fastest.

9. Define the initial value function, the following one will always work as a default, but by
making smart choices for this inital value function you can cut the run time for the value
function iteration.
V0=ones(n a,n z);

That covers all of the objects that must be created, the only thing left to do is simply call the value
function iteration code and let it do it’s thing.
[V,PolicyIndexes] =

ValueFnIter Case2(V0, n d, n a, n z, pi z,
Phi aprimeKron, Case 2 Type, ReturnFn,
Parameters, DiscountFactorNames, ReturnFnParamNames, [vfoptions]);

10These must be so that the element in row i and column j gives the probability of going from state i this period
to state j next period. So each row must sum to one.
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4.2 Some further remarks

• Notice that Case 1 models are in fact simply a subset of Case 2 models in which one of the
decision variables (d) is simply next periods endogenous state (a′). This means that the Case
2 code could in principle be used for solving Case 1 models, however this would just make
everything run slower. (Using the Case 2 code for case one models is done by setting all
the elements of Phi aprime to zero, except those for which (a certain element of) d equals
aprime which should be set equal to one.)

• The remaining remarks are simply repeats of remarks from Case 1:

– Often one may wish to define the grid for z and it’s transition matrix by the Tauschen
method or something similar. The toolkit provides codes to implement the Tauchen
method, see Appendix C.

– There is no problem with making the transitions of certain exogenous state variables
dependent of the values taken by other exogenous state variables. This can be done in
the obvious way.

– Likewise, dependence of choices and expectations on more than just this period (ie. also
last period and the one before, etc.) can also be done in the usual way for Markov
chains.

– Models with no uncertainty: these are easy to do simply by setting n z = 1 and pi z = 1.

4.3 Options

Optionally you can also input a further argument, a structure called vfoptions, which allows you to
set various internal options. Perhaps the most important of these is vfoptions.parallel which can
be used get the codes to run parallely across multiple CPUs (see the examples). The full list of the
vfoptions is just the same as for the Case 1 code — see there for details.

5 Calculating Stationary Distributions

Once you solve the Value Function Iteration problem and get the optimal policy function, Policy,
you can use the StationaryDist Case1 (or Case2) command to calculate the stationary distri-
bution (over the endogenous and exogenous states). StationaryDist Case1 essentially works by
automatically calling two sub-commands in order. The first is StationaryDist Case1 Simulation
(and Case2) and is based on simulating an individual for multiple time periods and then aggregat-
ing this across time (like a simulated estimation of the empirical cdf).The second
StationaryDist Case1 Iteration (and Case2) is based on iterating directly on the agents distribu-
tion until it converges.11 In practice a good combination of speed and accuracy often comes from
using StationaryDist Case1 Simulation to generate a starting guess, which can then be used as
an input to StationaryDist Case1 to get an accurate answer; the method followed by default when
using StationaryDist Case1. The main weakness of this approach is that
StationaryDist Case1 Iteration is very memory intensive and so is often not usable with larger

11By default the simulation is done on parallel CPUs, and the iteration on the GPU. This combination appears to
be the best for speed.
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grids. More details on these sub-commands, which can easily be called directly, can be found in
Appendix E

All of the inputs required will already have been created either by running the VFI command,
or because they were themselves required as an input in the VFI command.

5.1 Inputs and Outputs

To use the toolkit to solve problems of this sort the following steps must first be completed.

• You will need the optimal policy function, Policy, as outputed by the VFI commands.
Policy

• Define n a, n z, and n d. You will already have done this to be able to run the VFI command.

• Create the transition matrices, pi z for the exogenous z variables. Again you will already
have done this to be able to run the VFI command.

That covers all of the objects that must be created, the only thing left to do is simply call the
value function iteration code and let it do it’s thing.
StationaryDist=StationaryDist Case1(Policy,n d,n a,n z,pi z, [simoptions]);

The outputs are

• StationaryDist: The steady state distribution evaluated on the grid (ie. on a× z). It will be
a matrix of size [na, nz] and at each point it will be the value of the probability distribution
function evaluated at the corresponding point (a, z).

5.2 Some further remarks

• A description of the sub-commands StationaryDist Case1 Simulation and
StationaryDist Case1 Iteration can be found in appendix

5.3 Options

Optionally you can also input a further argument, a structure called simoptions, which allows you to
set various internal options. Perhaps the most important of these is simoptions.parallel which can
be used get the codes to run on the GPU (see the examples). Following is a list of the simoptions,
the values to which they are being set in this list are their default values.

• Define the starting (seed) point for each simulation.
simoptions.seedpoint=[ceil(N a/2),ceil(N z/2)];

• Decide how many periods the simulation should run for.
simoptions.simperiods=10ˆ4;
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• Decide for how many periods the simulation should perform a burnin from the seed point
before the ’simperiods’ begins.
simoptions.burnin=10ˆ3;

• If you want to parallelize the code on the GPU set to two, parallelize on CPU set to one,
single core on CPU set as zero
simoptions.parallel=0;
(Each simulation will be simperiods/ncores long, and each will begin from seedpoint and
have a burnin of burnin periods.)

• If you want feedback set to one, else set to zero
simoptions.verbose=0
(Feedback includes some on the run times of various parts of the code)

• If you are using parallel CPUs you need to tell it how many cores you have.
simoptions.ncores=1;

• You can turn off the iteration by setting simoptions.iterate = 0, in this case only simulation
is used. simoptions.iterate=1;

6 General Equilibrium of Heterogeneous Agent Models

The command HeteroAgentStationaryEqm Case1 (and Case2 ) allows for easy calculation of the
price (vector) associated with the general equilibrium of standard Bewley-Huggett-Aiyagari mod-
els12,13.

As well as the standard inputs required for the Value function iteration command the other
inputs needed are related to evaluating the market clearance conditions.

By default the command will use matlabs fminsearch command to solve the fixed-point problem
represented by the general equilibrium requirement. Alternatively the user can set n p to be non-
zero in which case the market clearance condition will be evaluated on a grid for prices. This can be
useful if you which to check for the possible existence of multiple equilibria and has the advantage
of possessing well understood convergence properties (Kirkby, 2017).

In the notation of the toolkit this is any problem for which the competitive equilibrium can be
written as

Definition 1. A Competitive Equilibrium is an agents value function Vp; agents policy function g;
vector of prices p; measure of agents µp; such that

1. Given prices p, the agents value function Vp and policy function gp solve the agents problem
given by a Case 1 value function (as described in Section 3).

2. Aggregates are determined by individual actions: Bp = A(µp).

3. Markets clear (in terms of prices): λ(Bp, p) = 0.

12General equilibrium incomplete market heterogeneous agent models with idiosyncratic, but no aggregate, shocks.
13In principle one could use these codes to solve fixed-point problems around value function problems more generally,

but this would be more advanced.
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4. The measure of agents is invariant:

µp(a, z) =

∫ ∫ [∫
1a=ga′p (â,z)µp(â, z)Q(z, dz′)

]
dâdz (1)

the p subscripts denote that these objects depend on the price(s) p.

6.1 Preparing the model

To use the toolkit to solve problems of this sort the following steps must first be made.

1. Create all of the variables that are needed for the value function problem. These are exactly
the same as those used for V alueFnIter Case1 and the exact same notation applies (See
Section 3).
(Namely V0, n d, n a, n z, d grid, a grid, z grid, pi z,
ReturnFn, Parameters, DiscountFactorNames, ReturnFnParamNames, [vfoptions])

2. Define functions for any aggregate variables that are needed by the market clearance equation
in terms of the micro-level variables, these are evaluated as the integral of the function over
the stationary agents distribution. Store all these functions together.
eg., if the only aggregate variables is the integral of the endogenous state, then
SSvaluesFn 1 = @(aprime val,a val,s val;
(You always need the @(...) defined either in this way, or with @(d val, ...) where appropriate.
You also need to include parameters where appropriate, done in same way as parameters are
passed to the MarketClearanceEqn below.)
Define the names of any parameters used to evaluate the aggregate variables.
SSvalueParamNames(1).Names={};
(In our example there were none, but an example might be that you want to evaluate tax
revenue, which is a tax rate parameter times an endogenous state variable, then the tax rate
parameter name will be given here.)
You then store all of these together:
SSvaluesFn={SSvaluesFn 1}; (For models with multiple SSvaluesFns simply create more in
same manner and store them all in SSvaluesFn.)

3. Define functions for how to calculate market clearance conditions for which we need to find
general equilibrium. Then store these functions together.
Create Market Clearance equation:
MarketClearanceEqn 1 = @(AggVars,p,param1, param2) p-param1*AggVars(1)ˆparam2
Give the names of the parameters:
MarketPriceParamNames(1).Names = {’param1’, ’param2’}
(param1 must exist in Parameter.param1; similarly for param2. ’param1’ is the name of
the parameter, e.g. ’alpha’)
You then store all of these together:
MarketClearanceEqns=MarketClearanceEqn 1;
(For models with multiple Market Clearance Equations simply create more in same manner
and store them all in MarketClearanceEqns.)

4. Define the names of the prices which are being used to calculate market clearance equations.
General equilibrium will be where the inputed values of these correspond to those that lead
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the market clearance equations to be zero-valued.
PriceParamNames={’r’};
(Technically, in terms of finding the general equilibrium these could be any quantity, not just
prices.)

That covers all of the objects that must be created, the only thing left to do is simply call the
heterogeneous agent general equilbrium code.
[p eqm,p eqm index,MarketClearance] =

HeteroAgentStationaryEqm Case1(V0, n d, n a, n z, n p, pi z,d grid, a grid, s grid,
ReturnFn, SSvaluesFn, MarketClearanceEqns, Parameters, DiscountFactorNames,
ReturnFnParamNames, SSvalueParamNames, MarketClearanceParamNames,
PriceParamNames, [heteroagentoptions], [simoptions], [vfoptions]);

Once run p eqm will contain the general equilibrium price vector. MarketClearance will be
a vector containing the values for each of the market clearance conditions (general equilibrium is
where these equals zero). p eqm index will simply take the value nan, unless you are using the
(non-default) grid on prices options, see ’Some further remarks’ below.

6.2 Some further remarks

• The Case2 command is the same, except that you also need to input Phi aprimeKron and
Case2 Type in exactly the same way as for the V alueFnIter Case2 command.

• By setting n p to a non-zero value you tell the command that instead of using fminsearch
(which uses simplex methods) to solve for the general equilibrium using the market clearance
conditions it should instead use a grid on prices. np should describe the size of the grids for
the price vectors (in exactly the same way as nd contains the size of the grids for the vector
of decision variables d). The price grids themselves should be passed as a stacked column
vector in heteroagentoptions.pgrid, the format of being exactly the same as is used for d grid
or z grid, ie. a stacked column vector. In this case the output of p eqm index is now the
grid index corresponding to p eqm, and MarketClearance contains the values for each of the
market clearance conditions at every point on the price grid.

6.3 Options

The options for the value function and stationary distribution can be set using structures called vfop-
tions and simoptions and are exactly the same as those for V alueFnIter Case1 and StationaryDist Case1.
Further options can be passed in heteroagentoptions and include heteroagentoptions.pgrid,
heteroagentoptions.verbose, heteroagentoptions.multimarketcriterion and heteroagentoptions.fminalgo.
heteroagentoptions.pgrid is used when you want to evaluate the market clearance conditions on a
grid on prices, see ’Some Further Remarks’ just above. heteroagentoptions.multimarketcriterion
and heteroagentoptions.fminalgo allow you to change multiple market clearance conditions are
evaluated (the former) and which algorithm is used to compute the general equilibrium fixed-point
problem (the later); both are currently inactive and simply implemented to allow future extensions
of the code.

18



6.4 Examples

See the Aiyagari (1994) example at
github.com/vfitoolkit/VFItoolkit-matlab-examples/tree/master/HeterogeneousAgentModels

7 Transition Path for Heterogeneous Agent Models

The command TransitionPath Case1 (and Case2 ) allows for easy calculation of the path of the
price (vector) associated with the general equilibrium transition path of a standard Bewley-Huggett-
Aiyagari models.14

As well as the standard inputs required for the general equilibrium command the other inputs
needed are related to the (series of) parameter changes to be evaluated, including the final value
function and the initial stationary agents distribution.

The algorithm is based on the standard shooting algorithm approach to computing general
equilibrium transition paths in heterogeneous agent models of the Bewley-Huggett-Aiyagari type.

7.1 Preparing the model

To use the toolkit to solve problems of this sort the following steps must first be made.

1. Many of the inputs are exactly the same as those used to compute the final general equilib-
rium with the HeteroAgentStationaryEqm Case1 command and the exact same notation
applies (see Section 6).
(Namely n d, n a, n z, d grid, a grid, z grid, pi z,
ReturnFn, SSvaluesFn, MarketClearanceEqns, Parameters, DiscountFactorNames,
ReturnFnParamNames, SSvalueParamNames, MarketClearanceParamNames, PriceParam-
Names,)

2. Define the number of time periods which you are allowing for the transition path.
T=100;

3. Define the names of any of the parameters that change over the path.
ParamPathNames={’alpha’};
(All other parameters are assumed to remain constant at their initial values.)

4. Define the path of the parameters for which you want to calculate the transition.
ParamPath=0.4*ones(T,1);
(If you just want a one off unannounced change then this will simply be the final parameter
values for T-periods. See ’Some Further Remarks’ below for more complex transition paths.)

5. Define the names of the prices that make up the path.
PricePathName={’r’};
(This will almost always be the same as PriceParamNames.)

14General equilibrium incomplete market heterogeneous agent models with idiosyncratic, but no aggregate, shocks.
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6. Define an initial guess for the price path. The final price value (at period T ) must be that
associated with the final general equilibrium.
PricePath0=linspace(0.04,0.03,T);
(eg., from initial price to final price.)

7. Give the initial agent distribution (often, but not necessarily, the stationary distribution
associated with initial parameters). V final

8. Give the final value function (you must calculate this beforehand, see example codes). Sta-
tionaryDist init

That covers all of the objects that must be created, the only thing left to do is simply call the
heterogeneous agent general equilbrium code.
[PricePathNew] =

TransitionPath Case1(PricePath0, PricePathNames, ParamPath, ParamPathNames, T, V final,
StationaryDist init,

n d, n a, n z, pi z, d grid,a grid,z grid, )
ReturnFn, SSvaluesFn, MarketClearanceEqns, Parameters, DiscountFactorNames,
ReturnFnParamNames, SSvalueParamNames, MarketClearanceParamNames, PriceParam-

Names,
[transpathoptions]);

Once run PricePathNew will contain the general equilibrium transition path for prices.

7.2 Some further remarks

• The Case2 command is the same, except that you also need to input Phi aprimeKron and
Case2 Type in exactly the same way as for the V alueFnIter Case2 command.

• The command can solve for the transition path for any finite-length sequence of parameter
changes that are announced at time 0. This includes one-off unannounced changes (set the
entire parameter path equal to the final parameter value), one-off preannounced changes (set
the parameter path equal to the initial parameter values for the first few periods, then to the
final parameter values from then on), or even a whole series of preannounced changes (set the
parameter path equal to the series of changes, then to the final parameter values from then
on).

• It is important to check that the choice of T is large enough to ensure convergence (ie., that
the tail of the parameter path has been at the final parameter values long enough). The codes
return the price path with the final value forced to remain at whatever was set in the initial
price path. One can therefore informally check if T is long enough simply by comparing the
period T − 1 price with the period T price (the T − 1 price should have already converged to
the T price). More formally one should check that the agent distribution and value function
themselves have converged to the final general equilibrium values (and not just the prices),
and that the result is invariant to increasing T .
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7.3 Options

Options relating to computing the transition path can be passed in transpathoptions and include,
with their default values,

• transpathoptions.tolerance = 10ˆ(−5); Sets the convergence criterion for the general eqm
price path.

• transpathoptions.parallel = 2; Default is to use the gpu.

• transpathoptions.exoticpreferences = 0; Not yet implemented for transition path. Will be
used to implement quasi-hyperbolic discounting and epstein-zin preferences.

• transpathoptions.oldpathweight = 0.9; Determines the weights used to update the price
path. (Must be between 0 and 1.)

• transpathoptions.weightscheme = 1; Determines the weighting scheme used to update the
price path.

• transpathoptions.maxiterations = 1000; If a general eqm price path has not been found
within this number of iterations then command will simply terminate.

• transpathoptions.verbose = 0; If set to 1 then command will print regular output on progress.

7.4 Examples

See the example based on finding the transition path for a change in the capital share of output
(the parameter in the production function) in the model of Aiyagari (1994)
github.com/vfitoolkit/VFItoolkit-matlab-examples/tree/master/HeterogeneousAgentModels

8 Finite Horizon Value Function Iteration: Case 1

The relevant command is
[V,Policy] = ValueFnIter Case1 FHorz(n d, n a, n z, N j, d grid, a grid, z grid, pi z,

ReturnFn, Parameters, DiscountFactorParamNames, ReturnFnParamNames, [vfoptions]);
This section describes the problem it solves, all the inputs and outputs, and provides some further
info on using this command.

The main difference from the infinite horizon codes (other than the obvious that the horizon
is finite) is that parameters are allowed to depend on age. To do this simply declare an (age
dependent) parameter as a row vector of length N j. The command automatically determines
which parameters are age dependent and which are not and acts accordingly. (The return function
also depends on j. Non-default options allow for further age dependence in the exogenous shock
process.)

The Case 1 finite-horizon value function iteration code can be used to solve any problem that
can be written in the form

Vj(a, z) = max
d,a′
{Fj(d, a′, a, z) + βjE[Vj + 1(a′, z′)|a, z]}
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for j = 1, , , J subject to

z′ = π(z)

VJ+1 = 0

where
z ≡ vector of exogenous state variables
a ≡ vector of endogenous state variables
d ≡ vector of decision variables

notice that any constraints on d, a, & a′ can easily be incorporated into this framework by building
them into the return function. Note that non-zero termination values for VJ+1 can be implemented
via the definition of FJ .

The main inputs the value function iteration command requires are the grids for d, a, and z;
the discount rate; the transition matrix for z; and the return function F .

It also requires to info on how many variables make up d, a and z (and the grids onto which
they should be discretized).

vfoptions allows you to set some internal options (including parallization), if vfoptions is not
used all options will revert to their default values.

The forms that each of these inputs and outputs takes are now described in detail. The best
way to understand how to use the command may however be to just go straight to the examples;
in particular the Finite-Horizon Stochastic Consumption-Savings model (Appendix 10.3).

8.1 Inputs and Outputs

To use the toolkit to solve problems of this sort the following steps must first be made.

• Define n a, n z, and n d as follows. n a should be a row vector containing the number of
grid points for each of the state variables in a; so if there are two endogenous state variables
the first of which can take two values, and the second of which can take ten values then
na = [2, 10];. n d & n z should be defined analagously.

• Define N j as the number of periods in the finite-horizon value function problem.

• Create the (discrete state space) grids for each of the d, a & z variables,
a grid=linspace(0,2,100)’; d grid=linspace(0,1,100)’; z grid=[1;2;3];
(They should be column vectors. If there are multiple variables they should be stacked column
vectors)

• Create the transition matrices for the exogenous z variables15

pi z=[0.3,0.2,0.1;0.3,0.2,0.2; 0.4,0.6,0.7];
(Often you will want to use the Tauchen Method to create z grid and pi z)

• Define the return function. This is the most complicated part of the setup. See the example
codes applying the toolkit to some well known problems later in this section for some illus-
trations of how to do this. It should be a Matlab function that takes as inputs various values

15These must be so that the element in row i and column j gives the probability of going from state i this period
to state j next period.
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for (d, aprime, a, z, j) and the parameters and outputs the corresponding value for the return
function.
ReturnFn=@(d,aprime,a,z,j,alpha,gamma) ReturnFunction AMatlabFunction

• Define the initial value function, the following one will always work as a default, but by
making smart choices for this inital value function you can cut the run time for the value
function iteration.
V0=ones(n a,n z);

• Pass a structure Parameters containing all of the model parameters. Age dependent param-
eters are declared as row vectors.
Parameters.beta=0.96; Parameters.alpha=0.3;
Parameters.gamma=[1,2,2,1.8];

• ReturnFnParamNames is a cell containing the names of the parameters used by the Re-
turnFn (they must appear in same order as used by the ReturnFn).
ReturnFnParamNames={’alpha’,’gamma’}

• DiscountFactorNames is a cell containing the names of the discount factor parameter (it is
also used for ’exoticpreferences’ like Epstein-Zin).
DiscountFactorParamNames={’beta’}

That covers all of the objects that must be created, the only thing left to do is simply call the
value function iteration code and let it do it’s thing.
[V,Policy] = ValueFnIter Case1 FHorz(n d, n a, n z, N j, d grid, a grid, z grid, pi z,

ReturnFn, Parameters, DiscountFactorParamNames, ReturnFnParamNames, vfoptions);

The outputs are

• V : The value function evaluated on the grid (ie. on a × z). It will be a matrix of size
[na, nz, Nj ] and at each point it will be the value of the value function evaluated at the
corresponding point (a, z, j).

• Policy: This will be a matrix of size [length(nd) + length(na), na, nz, Nj ]. For each point
(a, z, j) the corresponding entries in Policy, namely Policy(:, a, z, j) will be a vector contain-
ing the optimal policy choices for (d, a).16

8.2 Some further remarks

• Models where d is unnecessary (only a′ need be chosen): set n d = 0 and d grid = 0 and
don’t put it into the return fn, the code will take care of the rest.

• Often one may wish to define the grid for z and it’s transition matrix by the Tauschen
method or something similar. The toolkit provides codes implementing the Tauchen method,
see Appendix C

• There is no problem with making the transitions of certain exogenous state variables depen-
dent of the values taken by other exogenous state variables. This can be done in the obvious

16By default, vfoptions.polindorval = 1, they will be the indexes, if you set vfoptions.polindorval = 2 they will
be the values.
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way; see Appendix A. (For example: if there are two exogenous variables za & zb one can
have Pr(zbt+1 = zbj) = Pr(zbt+1 = zbj |zbt ) and Pr(zat+1 = zaj ) = Pr(zat+1 = zaj |zat , zbt+1, z

b
t ).)

• Likewise, dependence of choices and expectations on more than just this period (ie. also last
period and the one before, etc.) can also be done in the usual way for Markov chains (see
Appendix A).

• Models with no uncertainty: these are easy to do simply by setting n z = 1 and pi z = 1.

8.3 Options

Optionally you can also input a further argument, a structure called vfoptions, which allows you to
set various internal options. Perhaps the most important of these is vfoptions.parallel which can
be used get the codes to run parallely across multiple CPUs (see the examples). Following is a list
of the vfoptions, the values to which they are being set in this list are their default values.

• Define the tolerance level to which you wish the value function convergence to reach
vfoptions.tolerance=10ˆ(-9)

• Decide whether you want the optimal policy function to be in the form of the grid indexes
that correspond to the optimal policy, or to their grid values.
vfoptions.polindorval=1
(Set vfoptions.polindorval=1 to get indexes, vfoptions.polindorval=2 to get values.)

• Decide whether or not to use Howards improvement algorithm (recommend yes)
vfoptions.howards=80
(Set vfoptions.howards=0 to not use it. Otherwise variable is number of time to use Howards
improvement algorithms, about 80 to 100 seems to give best speed improvements.)

• If you want to parallelize the code on the GPU set to two, parallelize on CPU set to one,
single core on CPU set as zero
vfoptions.parallel=2

• If you want feedback set to one, else set to zero
vfoptions.verbose=0
(Feedback includes some info on how convergence is going and on the run times of various
parts of the code)

• When running codes on CPU it is often faster to input the Return Function as a matrix,
rather than as a function.
vfoptions.returnmatrix=0
(By default it assumes you have input a function. Setting vfoptions.returnmatrix = 1 tells
the codes you have inputed it as a matrix. When using GPU just ignore this option.)

• By default the toolkit assumes standard von-Neumann-Morgenstern preferences. It is possible
to overrule this and use ’exotic’ preferences instead, if you do this thenDiscountFactorNames
is used to pass the needed additional parameters names. For example, can use Epstein-Zin
parameters.
vfoptions.exoticpreferences=0
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• The ’low memory’ option reduces the memory use, allowing you to solve larger state spaces,
but is notably slower. Thus you should only choose to set the low memory option to one if
the default is giving an ’out of memory’ error.
vfoptions.lowmemory=0
(Set vfoptions.lowmemory=0 for much faster but memory intensive codes, vfoptions.lowmemory=1
to reduce memory use.)

• When using graphics cards with single-precision floating point numbers17 I once had a problem
due to rounding errors, so that the ’Policy’ instead of containing all integer values contained
some numbers that were 10−15 away from being an integer. Setting this option to 1 forces
them all to round to integers. Typically this is unnecessary and in principle could cause
unintended errors, so is off by default.
vfoptions.policy forceintegertype=0

8.4 Some Examples

Example: Finite-Horizon Stochastic Consumption Savings

9 General Equilibrium of Overlapping-Generations models

The command HeteroAgentStationaryEqm Case1 FHorz (and Case2 FHorz ) allows for easy cal-
culation of the price (vector) associated with the general equilibrium of standard Overlapping-
Generations models18,19.

As well as the standard inputs required for the Value function iteration command the other inputs
needed are related to evaluating the market clearance conditions and an initial agents distribution
(at birth).

By default the command will use matlabs fminsearch command to solve the fixed-point problem
represented by the general equilibrium requirement. Alternatively the user can set n p to be non-
zero in which case the market clearance condition will be evaluated on a grid for prices. This can
be useful if you which to check for the possible existence of multiple equilibria.

In the notation of the toolkit this is any problem for which the competitive equilibrium can be
written as

Definition 2. A Competitive Equilibrium is an agents finite-horizon value function Vp = {V1,p, ...VJ,p};
agents policy function gp = {g1,p, ..., gJ,p}; vector of prices p; measure of agents µp = {µ1,p, ..., µJ,p};
such that

1. Given prices p, the agents value function Vp and policy function gp solve the agents problem
given by a Case 1 finite-horizon value function problem (as described in Section 8).

17NVIDIA deliberately handicap most gaming GPUs to single-precision so they can charge a higher price for
’scientific computing’ GPUs with double-precision floating point numbers.

18General equilibrium finite-horizon-value-function incomplete market heterogeneous agent models with idiosyn-
cratic, but no aggregate, shocks.

19In principle one could use these codes to solve fixed-point problems around finite-horizon value function problems
more generally, but this would be more advanced.
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2. Aggregates are determined by individual actions: Bp = A(µp).

3. Markets clear (in terms of prices): λ(Bp, p) = 0.

4. The measure of agents is given by their decisions:

µj+1,p(a, z) =

∫ ∫ [∫
1
a=ga

′
j,p(â,z)

µj,p(â, z)Qj(z, dz
′)

]
dâdz, j=1,...,J-1 (2)

the p subscripts denote that these objects depend on the price(s) p.20

9.1 Preparing the model

To use the toolkit to solve problems of this sort the following steps must first be made.

1. Create all of the variables that are needed for the value function problem. These are exactly
the same as those used for V alueFnIter Case1 FHorz and the exact same notation applies
(See Section 8).
(Namely jequaloneDist,AgeWeights,n d, n a, n z, N j, d grid, a grid, z grid, pi z,
ReturnFn, Parameters, DiscountFactorParamNames, ReturnFnParamNames, [vfoptions])

2. Define the distribution of agents at birth
jequaloneDist=ones(n a,n z)/(prod(n a)*prod(n z));
Must sum to one. This example just assumes a uniform distribution of all agents across all
possible states at ’birth’.

3. Define the mass of agents for each age group
AgeWeights=ones(1,J)/J;
Must sum to one. This is needed for population growth and age-dependent mortality. See
Example codes for how to use it. If you have neither population growth nor age-dependent
mortality it is just the example vector given here.

4. Define functions for any aggregate variables that are needed by the market clearance equation
in terms of the micro-level variables, these are evaluated as the integral of the function over
the stationary agents distribution. Store all these functions together.
eg., if the only aggregate variables is the integral of the endogenous state, then
SSvaluesFn 1 = @(aprime val,a val,s val;
(You always need the @(...) defined either in this way, or with @(d val, ...) where appropriate.
You also need to include parameters where appropriate, done in same way as parameters are
passed to the MarketClearanceEqn below.)
Define the names of any parameters used to evaluate the aggregate variables.
SSvalueParamNames(1).Names={};

20Note that the present definition requires agents to be ’reset’ at birth, rather than inheriting all the characteristics
of the deceased. This is done as in most situations where inheritance is desired a degree of altruism from parents to
decendents is likely also desired and so the value function problem becomes infinite-horizon (modelling a dynasty) and
so the HeteroAgentStationaryEqm Case1 can be used to solve these. The case in which inheritance of characteristics
is desired in combination with the utility of one generation not depending directly on the utility of the next generation
to which it will be passing on it’s characteristics is not covered by the VFI Toolkit but could be implemented as a
simple fixed point problem wrapped around HeteroAgentStationaryEqm Case1 FHorz that looks for the fixed point
that makes the initial age j=1 distribution ’match’ the distribution of ’deceased’ agents.
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(In our example there were none, but an example might be that you want to evaluate tax
revenue, which is a tax rate parameter times an endogenous state variable, then the tax rate
parameter name will be given here.)
You then store all of these together:
SSvaluesFn={SSvaluesFn 1}; (For models with multiple SSvaluesFns simply create more in
same manner and store them all in SSvaluesFn.)

5. Define functions for how to calculate market clearance conditions for which we need to find
general equilibrium. Then store these functions together.
Create Market Clearance equation:
MarketClearanceEqn 1 = @(AggVars,p,param1, param2) param1*AggVars(1)ˆparam2
Give the names of the parameters:
MarketClearanceParamNames(1).Names = {’param1’, ’param2’}
(param1 must exist in Parameter.param1; similarly for param2. ’param1’ is the name of
the parameter, e.g. ’alpha’)
You then store all of these together:
MarketClearanceEqns=MarketClearanceEqn 1;
(For models with multiple Market Clearance Equations simply create more in same manner
and store them all in MarketClearanceEqns.)

6. Define the names of the prices which are being used to calculate market clearance equations.
General equilibrium will be where the inputed values of these correspond to those that lead
the market clearance equations to be zero-valued.
PriceParamNames={’r’};
(Technically, in terms of finding the general equilibrium these could be any quantity, not just
prices.)

That covers all of the objects that must be created, the only thing left to do is simply call the
heterogeneous agent general equilbrium code.
[p eqm,p eqm index,MarketClearance] =

HeteroAgentStationaryEqm Case2(V0, n d, n a, n z, n p, pi z,d grid, a grid, s grid,
ReturnFn, SSvaluesFn, MarketClearanceEqns, Parameters, DiscountFactorNames,
ReturnFnParamNames, SSvalueParamNames, MarketClearanceParamNames, PriceParam-

Names,
[heteroagentoptions], [simoptions], [vfoptions]);

Once run p eqm will contain the general equilibrium price vector. MarketClearance will be
a vector containing the values for each of the market clearance conditions (general equilibrium is
where these equals zero). p eqm index will simply take the value nan, unless you are using the
(non-default) grid on prices options, see ’Some further remarks’ below.

9.2 Some further remarks

• The Case2 command is the same, except that you also need to input Phi aprimeKron and
Case2 Type in exactly the same way as for the V alueFnIter Case2 command.

• By setting n p to a non-zero value you tell the command that instead of using fminsearch
(which uses simplex methods) to solve for the general equilibrium using the market clearance
conditions it should instead use a grid on prices. np should describe the size of the grids for

27



the price vectors (in exactly the same way as nd contains the size of the grids for the vector
of decision variables d). The price grids themselves should be passed as a stacked column
vector in heteroagentoptions.pgrid, the format of being exactly the same as is used for d grid
or z grid, ie. a stacked column vector. In this case the output of p eqm index is now the
grid index corresponding to p eqm, and MarketClearance contains the values for each of the
market clearance conditions at every point on the price grid.

9.3 Options

The options for the value function and stationary distribution can be set using structures called vfop-
tions and simoptions and are exactly the same as those for V alueFnIter Case1 and StationaryDist Case1.
Further options can be passed in heteroagentoptions and include heteroagentoptions.pgrid,
heteroagentoptions.verbose, heteroagentoptions.multimarketcriterion and heteroagentoptions.fminalgo.
heteroagentoptions.pgrid is used when you want to evaluate the market clearance conditions on a
grid on prices, see ’Some Further Remarks’ just above. heteroagentoptions.multimarketcriterion
and heteroagentoptions.fminalgo allow you to change multiple market clearance conditions are
evaluated (the former) and which algorithm is used to compute the general equilibrium fixed-point
problem (the later); both are currently inactive and simply implemented to allow future extensions
of the code.

9.4 Examples

See the Huggent & Ventura (2000) example at FORTHCOMING
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10 Examples

The examples 10.1 and 10.2 provide two basic examples of how to set up and call the value function
iteration.

The example 10.3 and provides a basic example of how to set up and call the finite horizon value
function iteration.

The codes implementing these and other examples can be found at github.com/vfitoolkit/vfitoolkit-
matlab-examples, you can find codes using the VFI Toolkit to replicate some classic papers at
github.com/vfitoolkit/vfitoolkit-matlab-replication. These replictions include doing things like sim-
ulating time series, computing standard business cycle statistics, and solving heterogeneous agent
models with general equilibrium.

10.1 Stochastic Neoclassical Growth Model (Diaz-Gimenez, 2001)

The Neoclassical Growth Model was first developed in Brock and Mirman (1972), although our
treatment of the model here is based on Dı́az-Gı́menez (2001). If you are unfamiliar with the model
a full description can be found in Section 2.2 of Dı́az-Gı́menez (2001); he also briefly discusses the
relation to the social planners problem, how the problem looks in both sequential and recursive
formulation, and how we know that value function iteration will give us the correct solution. In
what follows I assume you are familiar with these issues and simply give the value function problem.
Our concentration here is on how to solve this problem using the toolkit.

The value function problem to be solved is,

V (k, z) = sup
k′
{ c

1−γ

1− γ
+ β ∗ E[V (k′, z′)|z]}

subject to

c+ i = exp(z)kα (3)

k′ = (1− δ)k + i (4)

z′ = ρz + ε′ , ε
iid∼ N(0, σ2ε ) (5)

where k is physical capital, i is investment, c is consumption, z is a productivity shock that follows
an AR(1) process; exp(z)kα is the production function, δ is the depreciation rate.

We will use the Tauchen Method to discretize the AR(1) shock.

You can find a copy of the codes at github.com/vfitoolkit/VFItoolkit-matlab-examples

The code StochasticNeoClassicalGrowthModel.m solves this model, using parallelization on
GPU, and draws a graph of the value function; it contains many comments describing what is being
done at each step and uses StochasticNeoClassicalGrowthModelReturnFn which implements the
return function.
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10.2 Basic Real Business Cycle Model

The Basic Real Business Cycle Model presented here simply extends the Stochastic Neo-Classical
Growth Model to include an endogenous choice of labour supply (of how much to work). This is an
important difference in terms of the Toolkit we know have a ’d’ variable: a choice variable that does
not affect tomorrows state (in the Stochastic Neo-Classical Growth Model the only choice variable
was ’aprime’, next periods state). The following code solves the model. Below that are two further
codes that providing examples of what one can then do with the solution of the value function
iteration problem. The first demonstrates how to use the policy function created by the Value
Function (Case 1) command to reproduce the relevant findings of Aruoba, Fernandez-Villaverde,
and Rubio-Ramirez (2006) looking at the sizes of numerical errors; this serves the added purpose
of allowing you to easily experiment with how measures of the numerical errors change with the
choice of grids. The second provide examples of how to use further Toolkit commands to simulate
time series and calculate Standard Business Cycle Statistics.

The value function problem to be solved is,

V (k, z) = sup
k′
{(cθ(1− l)1−θ)τ

1− τ
+ β ∗ E[V (k′, z′)|z]}

subject to

c+ i = exp(z)kαl1−α (6)

k′ = (1− δ)k + i (7)

z′ = ρz + ε′ , ε
iid∼ N(0, σ2ε ) (8)

where k is physical capital, i is investment, c is consumption, l is labour supply, z is a productivity
shock that follows an AR(1) process; exp(z)kα is the production function, δ is the depreciation
rate.

We will use the Tauchen Method to discretize the AR(1) shock.

The codes implementing this model are available at github.com/vfitoolkit/VFItoolkit-matlab-
examples

The code BasicRealBusinessCycleModel.m solves the model, using parallelization on GPU,
and uses BasicRealBusinessCycleModel ReturnFn.m which defines the return function.
There are also BasicRealBusinessCycleModel BusinessCycleStatistics.m which reimplements
solving the model and then goes on to use some of the other Toolkit commands to simulate time
series and calculate the Standard Business Cycle statistics.
Also BasicRealBusinessCycleModel NumericalErrors.m which reimplements solving the model
and then goes on to use the output to reproduces a number of relevant elements from Tables &
Figures in Aruoba, Fernandez-Villaverde, and Rubio-Ramirez (2006) relating to the accuracy of
numerical solutions.
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10.3 Finite Horizon Stochastic Consumption Savings Model

A basic Finite-Horizon Stochastic Consumption Savings problem is given. The household lives
J = 10 periods. Wage income, W consists of two parts, a deterministic function of age Wj and
a stochastic component Wz. The household makes a simple choice between consumption c and
savings a. Savings earn interest rate r, and the future is discounted at age-independent rate β.

The value function problem to be solved is,

Vj(a, z) = sup
a′
{c

1−γ − 1

1− γ
+ β ∗ E[Vj+1(a

′, z′)|z]}

subject to

c+ a′ = W + a(1 + r) (9)

W = Wj +Wz (10)

log(W ′z) = ρlog(Wz) + ε′z , ε
iid∼ N(0, σ2ε ) (11)

V11 = 0 (12)

Notice that the parameters defining the deterministic component of income as a function of
age, Wj , are parameters that depend on age and so are created as a row vector. The VFI Toolkit
automatically understands that this row vector represents an age-dependent parameters, while the
other parameters are not age dependent.

We will use the Tauchen Method to discretize the AR(1) shock.

The codes implementing this model are available at github.com/vfitoolkit/VFItoolkit-matlab-
examples

The code FiniteHorzStochConsSavings.m solves the model, using parallelization on GPU,
and uses FiniteHorzStochConsSavings ReturnFn.m which defines the return function.
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A Markov Chains: Theory

This section explains a couple of useful things about Markov chains. When not otherwise specified
Markov chains are assumed to be of first-order.

Let us start with a definition: qt is a (discrete-time) n-state first-order Markov chain if at any
time t, qt takes a value in {q1, ..., qn}, and the probability that q takes the value qj at time t + 1
depends only on the state of q at time t, that is Pr(qt+1 = qj) = Pr(qt+1 = qi|qt = qj).

The transition matrix of q is defined as the n-by-n matrix Πq = [πqij ], where πqij = Pr(qt+1 =
qi|qt = pj). Thus the element of the transition matrix in row i and column j gives the probability
that the state tomorrow is qj given that the state today is qi.

For a more comprehensive treatment of Markov Chains see SLP chapters 8, 11, & 12; Sargent
& Ljungquist chapter 2; or Grimmett & Stirzaker - Probability and Random Processes.

A.1 How to turn a Markov chain with two variables into a single variable
Markov chain

Say you have a Markov chain with two variables, q & p (the most common macroeconomic appli-
cation for this is in heterogenous models, where q is an idiosyncratic state s and p is the aggregate
state z). Let q take the states q1, ...qn, and p take the states p1, ..., pm. We start with the simple
example of how to combine the two when their transitions are completely independent of each other
so as to illustrate the concepts and then treat the general case.

When q and p are independent Markov chains, Pr(qt+1 = qj) = Pr(qt+1 = qi|qt = qj) = πqij
∀i, j = 1, ...n and Pr(pt+1 = pj) = Pr(pt+1 = pi|pt = pj) = πpij ∀i, j = 1, ...m, then we can define
a new single-variable Markov chain r simply by taking the Kronecker Product of q and p. Thus,
r will have n times m states, [r1, .., rnm]′ = [q1, ...qn]′ ⊗ [p1, ...pm]′, and it’s transition matrix will
be the Kronecker Product of their transition matrices; Πr = Πq ⊗ Πp. For the definition of the
Kronecker product of two matrices see wikipedia.

For the vector (q, p) to be a (first-order) Markov chain, at least one of q and p must be indepen-
dent of the current period value of the other. Thus we assume, without loss of generality, that qt
evolves according to the transformation matrix defined by Pr(qt) = Pr(qt|qt−1, pt−1), while pt has
the transformation matrix Pr(pt) = Pr(qt, qt−1, pt−1)

21. Again we can define a Markov chain r will
have n times m states by [r1, .., rnm]′ = [q1, ...qn]′ ⊗ [p1, ...pm]′. The transition matrix however is
now more complicated; rather than provide a general formula you are referred to the examples of
Imrohoroglu (1989) and OTHEREXAMPLE which illustrate some of the common cases you may
wish to model.

If you have three or more variables in vector of the first-order Markov chain you can reduce this
to a scalar first-order Markov chain simply by iteratively combining pairs. For example with three
variables, (q1, q2, q3), start by first defining r1 as the combination of q1 & q2 (combining them as
described above), and then r as the combination of r1 and q3.

21Note that here I switch from describing Markov chains as t+ 1|t to t|t− 1, the difference is purely cosmetic.
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A.2 How to turn a second-order Markov chain into a first-order Markov chain

Suppose that q, with states q1, ...qn is a second-order Markov chain, that is Pr(qt+1 = qi) =
Pr(qt+1 = qi|qt = qj , qt−1 = qk) 6= Pr(qt+1 = qi|qt = qj). Consider now the vector (qt+1, qt). It
turns out that this vector is in fact a vector first-order Markov chain (define this periods state
(qt+1, qt) in terms of last periods state (qt, qt−1) by defining this periods qt+1 as a function of last
periods qt & qt−1 following the original second-order Markov chain, and define this periods qt as
being last periods qt). Now just combine the two elements of this first-order vector Markov chain,
(qt+1, qt), into a scalar first-order Markov chain r in the same way as we did above, that is by the
Kronecker product.

For third- and higher-order Markov chains simply turn them into three- and higher-element first-
order vector Markov chains, and then combine them into scalars by repeated pairwise Kronecker
products as above.
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B Markov Chains: Some Toolkit Elements

This section mentions a couple of commands that can be useful with Markov chains. One command
related to Markov chains which is not in this section is the Tauchen Method (see Appendix C).

B.1 MarkovChainMoments:

For the markov chain z defined by the states z grid and the transition matrix pi z (row i column
j gives the transition probability of going from state i this period to state j next period). The
command

[z mean,z variance,z corr,z statdist]=MarkovChainMoments(z grid,pi z,T, Tolerance)
gives the mean, variance, and correlation of the markov chain, as well as it’s stationary distribution.
Tolerance determines how strict to be in finding the stationary distribution. T is needed as the
correlation is determined by simulating the process (for T periods).
Note that should you then wish to calculate the expectation of any function of z, E[f(z)], it will
simply be f(z grid′)∗z statdist. So for example the mean, E[z], is actually just z grid′∗z statdist;
while E[exp(z)] is exp(z grid′) ∗ z statdist.
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C Tauchen Method

The toolkit contains a couple of functions for generating the grids and transition matrices for
exogenous variables based on the Tauchen Method for discrete state space approximations of VARs.
The main command TauchenMethod is for creating the approximation directly from the parameters
of an AR(1), and this is now described.

The Toolkit also includes commands TauchenMethodV AR for approximation (quadrature) of
a VAR(1), and RouwenhorstMethod which provides an alternative approximations of AR(1) pro-
cesses that outperforms the Tauchen method when the autocorrelation coefficient (referred to below
as ρ) takes a value near one.

Namely,

• TauchenMethod : Generates a markov chain approximation for AR(1) process defined by the
inputed parameters.

C.1 TauchenMethod

To create a discrete state space approximation of the AR(1) process,

zt = µ+ ρzt−1 + εt εt ∼iid N(0, σ2) (13)

the command is,
[z grid, pi z]=TauchenMethod(mu,sigmasq,rho,znum,q, [tauchenoptions]); the outputs are the

grid of discretized values (z grid) and the transition matrix (pi z). We now describe in more detail
the inputs and outputs.

C.1.1 Inputs and Outputs

The inputs are

• Define the constant, autocorrelation, and error variance terms relating to equation 13, eg.
mu=1; rho=0.9; sigmasq=0.09;

• Set the number of points to use for the approximation,
znum = 9;
(When using the value function iteration commands, znum will correspond to n z whenever
it is the only shock.)

• Set q, roughly q defines the number of standard deviations of z covered by the range of
discrete points,
q = 3;

the optional input is tauchenoptions

• Can either not parallelize (tauchenoptions.parallel=0), or parallelize on graphics card
(tauchenoptions.parallel=2). (If you set tauchenoptions.parallel=1 it will just act as if you
set a value of zero, as parallelizing on CPU does not appear to help at all)
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The outputs are,

• The discrete grid (of znum points). A column vector.
z grid

• The transition matrix; the element in row i, column j gives the probability of moving to state
j tomorrow, given that today is state i,
pi z
(each row sums to one; size is znum-by-znum)
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D Howards Improvement Algorithm (for Infinite Horizon Value
Function Iteration)

Howards improvement algorithm is not used by the infinite horizon value function iteration codes
for the first couple of iterations as it can otherwise lead to ’contamination’ ofthe -Inf elements. It is
set automatically to kick in just after this point (ie. once number of -Inf elements appears stable,
this is when currdist is finite (¡1), this slowed some applications (in which it didn’t matter when
it kicked in) but avoids what can otherwise be a fatal error. It is my experience that the greatest
speed gains come from choosing Howards to be something in the range of 80 to 100, hence the
default value of 80. To ensure that Howards Improvement Algorithm does not interfere with the
robustness of the algorithm convergence it is turned off after a number of uses (this is not just a
theoretical issue, it can break convergence with small grids).
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E StationaryDist Sub-commands

E.1 StationaryDist Case1 Simulation

All of the inputs required will already have been created either by running the VFI command, or
because they were themselves required as an input in the VFI command.

E.1.1 Inputs and Outputs

To use the toolkit to solve problems of this sort the following steps must first be completed.

• You will need the optimal policy function, Policy, as outputed by the VFI commands.
Policy

• Define n a, n z, and n d. You will already have done this to be able to run the VFI command.

• Create the transition matrices, pi z for the exogenous z variables. Again you will already
have done this to be able to run the VFI command.

That covers all of the objects that must be created, the only thing left to do is simply call the
value function iteration code and let it do it’s thing.
StationaryDist=StationaryDist Case1 Simulation(Policy,n d,n a,n z,pi z, [simoptions]);

The outputs are

• StationaryDist: The steady state distribution evaluated on the grid (ie. on a× z). It will be
a matrix of size [na, nz] and at each point it will be the value of the probability distribution
function evaluated at the corresponding point (a, z).

E.1.2 Options

Optionally you can also input a further argument, a structure called simoptions, which allows you to
set various internal options. Perhaps the most important of these is simoptions.parallel which can
be used get the codes to run on the GPU (see the examples). Following is a list of the simoptions,
the values to which they are being set in this list are their default values.

• Define the starting (seed) point for each simulation.
simoptions.seedpoint=[ceil(N a/2),ceil(N z/2)];

• Decide how many periods the simulation should run for.
simoptions.simperiods=10ˆ4;

• Decide for how many periods the simulation should perform a burnin from the seed point
before the ’simperiods’ begins.
simoptions.burnin=10ˆ3;
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• If you want to parallelize the code on the GPU set to two, parallelize on CPU set to one,
single core on CPU set as zero
simoptions.parallel=1;
(Each simulation will be simperiods/ncores long, and each will begin from seedpoint and
have a burnin of burnin periods.)

• If you want feedback set to one, else set to zero
simoptions.verbose=0
(Feedback includes some on the run times of various parts of the code)

• If you are using parallel you need to tell it how many cores you have (this is true both for
CPU and GPU parallelization). simoptions.ncores=1;

E.2 StationaryDist Case1 Iteration

All of the inputs required will already have been created either by running the VFI command, or
because they were themselves required as an input in the VFI command. The only exception is an
initial guess for StationaryDist; which can be any matrix of size [n a, n z] which sums to one.

E.2.1 Inputs and Outputs

To use the toolkit to solve problems of this sort the following steps must first be completed.

• You need an initial guess, StationaryDist, for the steady-state distribution. This can be any
[n a, n z] matrix which sums to one.
StationaryDist=ones([n a,n z]);

• You will need the optimal policy function, Policy, as outputed by the VFI commands.
Policy

• Define n a, n z, and n d. You will already have done this to be able to run the VFI command.

• Create the transition matrices, pi z for the exogenous z variables. Again you will already
have done this to be able to run the VFI command.

That covers all of the objects that must be created, the only thing left to do is simply call the
value function iteration code and let it do it’s thing.
StationaryDist=StationaryDist Case1 Iteration(InitialDist,Policy,n d,n a,n z,pi z,[simoptions])

The outputs are

• StationaryDist: The stationary distribution evaluated on the grid (ie. on a× z). It will be
a matrix of size [na, nz] and at each point it will be the value of the probability distribution
function evaluated at the corresponding point (a, z).
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E.2.2 Some Remarks

• Be careful on the interpretation of the limiting distribution of the measure over the endogenous
state and the idiosyncratic endogenous state. If the model has idiosyncratic but no aggregate
uncertainty then this measure will also represent the steady-state agent distribution. However
if there is aggregate uncertainty then it does not represent the measure of agents at any
particular point in time, but is simply the unconditional probability distribution [Either of
aggregates, or jointly of aggregates and the agents. Depends on the model. For more on this
see Imrohoroglu (1989) , pg 1374)].

• If the model has idiosyncratic and aggreate uncertainty and individual state is independent
of the aggregate state then pi sz = kron(pi s, pi z);.

E.2.3 Options

Optionally you can also input a further argument, a structure called simoptions, which allows you to
set various internal options. Perhaps the most important of these is simoptions.parallel which can
be used get the codes to run on the GPU (see the examples). Following is a list of the simoptions,
the values to which they are being set in this list are their default values.

• Define the tolerance level to which you wish the steady-state distribution convergence to reach
simoptions.tolerance=10ˆ(-9)

• Decide whether you want the optimal policy function to be in the form of the grid indexes
that correspond to the optimal policy, or to their grid values.
simoptions.maxit=5*10ˆ4;
(In my experience, after simulating an initial guess, if you need more that 5*10ˆ4 iterations
to reach the steady-state it is because something has gone wrong.)

• If you want to parallelize the code on the GPU set to two, parallelize on CPU set to one,
single core on CPU set as zero
simoptions.parallel=2;
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F Some Issues to be Aware Of

F.1 A Warning on ’Tolerance’ and Grid Sizes

The toolkit provides feedback on the occurance of various errors that may occour. One thing it
will not warn you of however (other than obvious things such as incorrect values in the return
function matrix) is that if your grids are too rough in comparison to the value you have choosen for
Tolerance then it will be impossible for that tolerance level to be reached and the code will never
end. This will be evident in the feedback the toolkit provides whilst running in verbose = 1 mode
as the ’currdist’ will begin repeating the same values (or series of values) instead of continuing to
converge to zero. In practice I have almost never had this problem, but I mention it just in case.

F.2 Poorly Chosen Grids

Another problem the toolkit does not tell you about is if your model tries to leave the grid (eg.
say your grid has a max capital level of 4, but agents with a capital level of 4 this period want
to choose a capital level of 4.2 for next period). This can be checked for simply by looking at the
output of the policy functions. If people do not choose to move away from the edge, then you may
have this error.

In any case it is always worth taking a close look at the value function and policy function
matrixes generated by the code to make sure they make sense as a check that you have defined all
the inputs correctly (eg. look for things like higher utility in the ’good’ states, utility increasing
in asset holdings, not too many times that people choose to stay in their current endogenous state
(this may be a signal your grid may be too coarse), etc.). An alternative way is to check for mass
at the edges of grids in the steady-state distributions.
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