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Abstract 

The work summarized in this paper explores the possibilities offered by statistical tools based on 
artificial neural networks for pattern recognition. Results offered here come from a research line with 
which it is pretend to stablish under which conditions automatic forecasting tools for time series offer 
significant advantage. In this context, artificial neural networks are applied to detect and determine 
those conditions. 
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INTRODUCTION	

The work summarized in this paper explores the possibilities offered by statistical tools based on 
artificial neural networks for pattern recognition and continuous variables forecasting. 

Results offered here come from a research line with which it is pretend to stablish under which 
conditions automatic forecasting tools for time series offer significant advantage. In this context, 
artificial neural networks are applied to detect and determine those conditions. 

Background: 

First step was designing the methodology: different automatic estimation ARIMA modeling tools were 
compared using a hold-out test strategy (García Cárceles, et al., 2013). In this first exercise, different 
error accuracy measures were computed and it was designed a novelty method to evaluate different 
measures using Receiving Operation Curves (ROC) (García Cárceles, et al., 2014). After evaluating 
different accuracy measures and its dependency with the typology of the data they refer, once it is 
stablish a method to objectively quantify the precision of each measure produced, compare accuracy of 
different automatic forecasting procedures (all of those questions addressed in previous work), some 
issues of concern remained for analysis. Specifically, the question whether there are a priori elements 
that may affect the quality of the prediction when using certain automatic procedure. 

Goal: 

So the idea here, is to “reverse” the previous analysis. That is, as it is already stablished what an accuracy 
forecast is, and even it is possible to use ROC curves to decide whether a forecast can be considered, in 
fact, a hit or a failure, these information can be used as a training data to let neural networks help to 
detect if those a priori elements do exist. 

ARTIFICIAL	NEURAL	NETWORKS	IN	CONTEXT	

General idea: 

The application of artificial neural networks, as a concept, to data processing has its origin in artificial 
intelligence works from the 40-50 which central interest was the construction of intelligent machines: 
teaching a machine how to process information similarly to how the brain does1. 

                                                            
1 A neural network is a massively parallel distributed processor that has a natural propensity for storing 
experiential knowledge and making it available for use. It resembles the brain in two respects: 1. 
Knowledge is acquired by the network through a learning process. 2. Interneuron connection strengths 
known as synaptic weights are used to store the knowledge (Aleksander & Morton, 1990). 
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Biological origins of the concept, outlines the idea of data analysis using neural structures, that is: a 
connectionist system where simple processing units (nodes similar to neurons) are linked by 
connections which transmit a changeable numerical value (weight as a synapse) from one node to 
another. 

Its main feature is that process information in parallel, that is, several neurons may be working 
(deciding) simultaneously. In addition, these systems are not programmed to perform a certain task, but 
"trained" using labelled examples as the training set, and from these to distil the essence of grouping. 
Therefore, in this analysis, we consider neural network as a process of “Machine Learning”2 for pattern 
recognition (classification). 

 
Figure 1: Schematic of a single hidden layer, feed-forward neural 
network. This is a typical representation of a two-stage regression 
or classification model (Hastie, et al., 2008, p. 393). 

Specification and fitting the Back-propagation network structure model: 

Typical network structure is proposed, named “back-propagation network” or “single layer perceptron” 
(see Figure 1), defined as a two-step classification or regression, described in detail in (Hastie, et al., 
2008, pp. 392-396). We’d summarize here its approach in order to help the reader follow the 
conceptual line developed here and introduce the nomenclature used. 

For K-class classification: 

1- There are K target measurements Yk, k = 1,…,K, each being coded as a 0-1 variable for the kth 
class. 

                                                            
2 “Machine Learning is generally taken to encompass automatic learning procedure based on logical or 
binary operations, that learn a task from a series of examples” (Michie, et al., 1994) 
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2- Derived features Zm are created from linear combinations of the inputs, and then the target Yk 
is models as a function of linear combinations of the Zm. Those are the features in the middle of 
the network and they are usually called “hidden units” due to the fact that are not directly 
observed. 

3- The output function gk(T) allows the final transformation of the vector of outputs T, concretely, 
for our K-class classification model, we’d use softmax function, because it’s also the 
transformation used in the multilogit model, which produces positive estimates that sum to one 
and represent the probability of class k. 

Formally: 

ܼ௠ ൌ ଴௠ߙሺߪ	 ൅ ௠்ߙ ܺሻ, ݉ ൌ 1,…  ,ܯ,

௞ܶ ൌ ଴௞ߚ	 ൅ ௞ߚ
்ܼ, ݇ ൌ 1,… ,  ,ܭ

௞݂ሺܺሻ ൌ 	݃௞ሺܶሻ, ݇ ൌ 1,… ,  ,ܭ

Where: ܼ ൌ 	 ሺܼଵ, ܼଶ, … , ܼெሻ, and ܶ ൌ 	 ሺ ଵܶ, ଶܶ, … , ௄ܶሻ . The activation function is chosen to be sigmoid 
ሻݒሺߪ ൌ 	1/ሺ1 ൅ ݁ି௩ሻ, and so, the output function is defined as: 

݃௞ሺܶሻ ൌ
்݁ೖ

∑ ்݁೗௄
௟ୀଵ

 

It is important to note that, in this context, parameters of the basis functions are learned from the data. 
Hence, a neural network can be thought of as a nonlinear generalization of the linear model. 

So far, we have introduce model specification as a neural network model which has unknown 
parameters (weights) and the goal is to obtain values for them that make the model fit the training data 
well. As in (Hastie, et al., 2008, p. 395),We denote the complete set of weights by ϴ, which consists of: 

ሼߙ଴௠, ݉;௠ߙ ൌ 1,2, … ݌ሺܯ	ሽܯ, ൅ 1ሻ	ݏݐ݄݃݅݁ݓ, 

ሼߚ଴௞, ;௞ߚ ݇ ൌ 1,2, … , ܯሺܭ	ሽܭ ൅ 1ሻ	ݏݐ݄݃݅݁ݓ, 

For classification we use cross-entropy (deviance): 

ܴሺߠሻ ൌ െ෍෍ݕ௜௞	݈݃݋	 ௞݂ሺݔ௜ሻ

௄

௞ୀ௜

ே

௜ୀଵ

 

Avoiding over fitting problems: Penalties 

To avoid over fitted solutions, it is introduced a penalty term in the error function in two manners (see 
(Hastie, et al., 2008, p. 398) for more details), as neural networks have too many weights and are likely 
to over fit the data at the global minimum of ܴሺߠሻ. 

1- Penalty error using weight decay: ܴሺߠሻ ൅ ሻߠሺܬ ሻ, whereߠሺܬߣ	 ൌ 	∑ ௞௠ߚ
ଶ

௞௠ ൅ ∑ ௠௟ߙ
ଶ

௠௟  
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2- Penalty error using weight elimination: ܴሺߠሻ ൅ ሻߠሺܬ ሻ, whereߠሺܬߣ	 ൌ 	∑ ఉೖ೘
మ

ଵାఉೖ೘
మ௞௠ ൅ ∑ ఈ೘೗

మ

ଵାఈ೘೗
మ௠௟ . 

ߣ ൒ 0 is a tuning parameter, usually estimated using cross-validation. 

ACCURACY	MEASURES	AS	TRAINING	DATA	

Preparation of data sets: 

The preparation of data sets was performed as follows: 

1- First place. Following methodology developed in previous work, real time series are used 
coming from economic and health area and obtained from different open-access sources. It is 
not desired to control neither by typology of ARIMA signal detected, nor by “decisions” made by 
a concrete forecast tool to fit it, but, exclusively, by its capacity to produce an accurate forecast. 
So it is selected an heterogeneous group of data sets, considering: 

a. Different frequency: annual (299 series), quarterly (6,039 series) and monthly (6,773 
series). 

b. Different number of observations (from 40 to 600 observations). 

c. Different magnitude (scale ranges from 10-4 to 109). 

2- N periods are removed from original time series (n=12 for monthly time series, n=4 for 
quarterly time series and n=5 for annual), because it is followed a hold-out test strategy. It is 
important to note, that this cut is not performed by the forecast tool used, so it is granted that 
the only information used by the tool to produce its forecasts are the data without the n periods 
removed. 

3- Then, the forecast tool is applied. We will use TRAMO (Time Series Regression with ARIMA 
Noise Rev: 934  Build: 2014/12/17 17:32:59) and SEATS (Signal Extraction ARIMA Time Series 
Rev: 934  Build: 2014/12/17 17:32:59), software tools which are described below. 

Automatic Forecast Tool description: 

TRAMO is a program for estimation and forecasting of regression models with possibly nonstationary 
(ARIMA) errors and any sequence of missing values. SEATS is a program for estimation of unobserved 
components in time-series following the so-called ARIMA-model-based method, extracting the trend, 
seasonal, irregular, and cyclical components. 

When using both applications assembled in its full automatic mode, this tool produces the following 
procedures: 
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1- Program test for log-level specification. 

2- Pretest for the presence of Trading Day (TD), Leap Year (LY) and Eastern Effect (EE). 

3- Automatic ARIMA model identification: (P D Q) (BP BD BQ) 

4- Interpolates missing observations if any and computes their associated MSE (Mean Squared 
Error). No restriction is imposed on the location of missing observations in the series. 

5- Outlier detection. Three types of outliers are considered: Additive (AO), Transitory Changes 
(TC) and Level Shifts (LS). The level of significance is set by the program and depends on the 
length of the series. 

6- The full model is estimated by maximum likelihood. 

7- Forecasts of the series up to two years horizon are computed, as well as their MSE. 

8- The model is decomposed and optimal estimators and forecasts of the components are 
obtained. Components: trend-cycle, seasonal, irregular and transitory components. 

A brief description of automatic procedure functions of TRAMO and SEATS can be found in (Gómez & 
Maravall, 1997, pp. 1,57). Si bien no es el objetivo de este análisis entrar a valorar la calidad del ajuste 
del modelo obtenido mediante el procedimiento automático de TRAMO SEATS, describiremos (aunque 
brevemente) aquí la base teórica que subyace al procedimiento de ajuste realizado por ambos 
programas para ofrecer una visión condensada de la cuestión en este documento. 

TRAMO: 

Given the vector of observations ݖ ൌ ሺݖ௧భ, … ,  ௧ಾሻ where 0 < t1 <…<tM, the program  fits the regressionݖ
model: 

௧ݖ ൌ ߚ௧′ݕ	 ൅ ௧ݒ ,   (1) 

where ߚ ൌ ሺߚଵ, … , ௧′ݕ ,௡ሻ′ is a vector of regression coefficientsߚ ൌ ሺݕଵ௧, … ,  ௡௧ሻ denotes n regressionݕ
variables, and vt follows the general ARIMA process: 

߶ሺܤሻߜሺܤሻݒ௧ ൌ  ሻܽ௧,   (2)ܤሺߠ	

Where B is the back shift operator; ߶ሺܤሻ, ߜሺܤሻ and	ߠሺܤሻ, are finite polynomials in B, and ܽ௧is assumed 
a n.i.i.d. (0 , ߪ௔ଶ) white-noise innovation. The polynomial ߜሺܤሻ contains the unit roots associated with 
differencing (regular and seasonal), ߶ሺܤሻ is the polynomial with stationary autoregresive roots (and the 
complex uni roots, if present), and ߠሺܤሻ denotes the (invertible) moving average polynomial. In 
TRAMO, they assume the following multiplicative form: 

ሻܤሺߜ ൌ ሺ1 െ ሻௗሺ1ܤ െ  ௦ሻ஽ܤ

߶ሺܤሻ ൌ ሺ1 ൅ ߶ଵܤ ൅⋯൅ ߶௣ܤ௣ሻሺ1 ൅ Φଵܤ௦ ൅⋯൅Φ௉ܤ௦௫௉ሻ 
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ሻܤሺߠ ൌ ሺ1 ൅ ܤଵߠ ൅⋯൅ ௤ሻሺ1ܤ௤ߠ ൅ Θଵܤ௦ ൅⋯൅ Θொܤ௦௫ொሻ 

where s denotes the number of observations per year. The model may contain a constant µ, equal to the 
mean of the differenced series ߜሺܤሻݖ௧. In practice is estimated as one of the regression parameters in 
(1). 

SEATS: 

The model for the differenced series from TRAMO (presumably, the differences taken on the original 
series ݔ௧ achieves stationarity) can be expressed as: 

߶ሺܤሻሺݖ௧ െ ሻ̅ݖ ൌ  ሻܽ௧,   (3)ܤሺߠ
Where ̅ݖ is the mean of ݖ௧, ܽ௧ is a white-noise series of innovations, normally distributed with zero 
mean and variance ߪ௔ଶ, ϕሺܤሻ and ߠሺܤሻare autoregressive (AR) and moving average (MA) polynomial in 
B, respectively. SEATS decomposes (decomposition can be multiplicative or additive) a series that follows 
model (3) into several components, considering: a) the trend component (ݔ௣௧); b) the seasonal 
component (ݔ௦௧); c) the cyclical component (ݔ௖௧); and d) the irregular component (ݔ௨௧). 

All components are derived from the ARIMA model detected: the trend component represent long-term 
evolution of the series, the seasonal component, captures the spectral peaks at seasonal frequencies; the 
cyclical component captures both fluctuations longer than a year and short term variations. The 
irregular component captures erratic, white noise behavior. 

As a conclusion, automatic forecasting procedure performed by TRAMO and SEATS provide a fully 
model-based method for forecasting and signal extraction in univariate time series. 

Description of the procedure for extracting forecasts: 

The procedure is fully transparent and has been designed using the software R (R Development Core 
Team, 2008). The sequence of tasks run under R is as follows: 

There are two processes in batch; the first one reads original files (downloaded in text format separated 
by coma, .csv file, from different data sources), extracts each time series to a separate file deleting last n 
data (which would be used later to quantify forecast accuracy) and the necessary strings to run TRAMO 
program are introduced. Second process runs TRAMO and stores its results, runs SEATS (using the input 
file automatically generated by TRAMO) and, again results are stored from the output files. 

On completion, we obtain a database with the results of the estimation and forecasting carried out by 
TRAMO and SEATS on the automatic process. Specifically we are interested in forecast at different 
horizons, and its standard deviation to compute confidence interval. 

In tables 1, 2 and 3, there are some of the results stored from the previous process. Each table refers to 
time series grouped by frequency (annual, quarterly and monthly data): 
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Table 1: Annual Series Summary Statistics 

 
Source: Own elaboration. 

Table 2: Quarterly Series Summary Statistics 

 
Source: Own elaboration. 

Table 3: Monthly Series Summary Statistics 

 
Source: Own elaboration. 

  

Mean SD Max Min Approx Beyond % of series

1% CV 1% CV that pass the

test (99%)

Length 34.95 3.56 36 22

Num. of ARMA

    param. per serie 1.40 0.92 5 0

Num. of outliers

   per serie 1.34 1.56 6 0

Q 7.65 10.62 147.34 0.15 18.48 1.00 99.00

N 36.56 103.01 783.11 0.00 9.21 36.79 63.21

SK ‐0.52 2.72 9.83 ‐10.86 2.58 25.75 74.25

Kur 2.68 4.66 25.84 ‐1.24 2.58 36.12 63.88

QS 0.00 0.00 9.21 0.00 100.00

Q2 6.11 4.28 23.61 0.08 20.09 1.67 98.33

Runs 0.03 1.86 5.12 ‐5.22 2.58 16.72 83.28

Mean SD Max Min Approx Beyond % of series

1% CV 1% CV that pass the

test (99%)

Length 88.92 42.45 221 17

Num. of ARMA 1.80 0.99 7 0

    param. per serie

Num. of outliers 1.75 2.24 28 0

   per serie

Q 14.81 5.75 85.42 1.13 29.14 1.01 98.99

N 13.05 153.30 8959.11 0.00 9.21 12.09 87.91

SK ‐0.20 1.43 10.31 ‐21.92 2.58 5.13 94.87

Kur 0.97 3.17 92.08 ‐2.01 2.58 11.39 88.61

QS 28.44 0.00 9.21 0.58 99.42

Q2 17.76 13.86 180.55 0.00 30.58 8.41 91.59

Runs ‐0.03 1.07 5.66 ‐7.42 2.58 2.07 97.93

Mean SD Max Min Approx Beyond % of series

1% CV 1% CV that pass the

test (99%)

Length 115.64 34.52 158 59

Num. of ARMA 2.19 0.81 7 0

    param. per serie

Num. of outliers 1.17 1.54 14 0

   per serie

Q 22.78 6.94 90.14 4.28 40.29 0.81 99.19

N 2.13 3.76 95.03 0.00 9.21 3.16 96.84

SK 0.08 1.07 5.00 ‐4.52 2.58 1.99 98.01

Kur 0.11 0.99 8.68 ‐2.37 2.58 2.19 97.81

QS 18.96 0.00 9.21 0.27 99.73

Q2 23.38 9.51 224.43 2.01 42.98 3.37 96.63

Runs 0.00 0.88 4.80 ‐3.25 2.58 0.32 99.68
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Description of the analysis process using neural networks: 

Accuracy of the each forecast is evaluated straightforward by checking if the real value is actually 
include in the forecast confidence interval, then we have a dichotomous result variable, which inform, 
in each case, if the automatic procedure has succeed with its forecast. 

On the other hand, we have a set of characteristics which have been already described in the literature 
as the “necessary conditions” to produce accurate forecasts, and that are stored in the output data base 
produced by TRAMO and SEATS. Some of those characteristics are the accuracy of the model fit 
(Diebold & Mariano, 1995) (Peña, 2010) (Hamilton, 1994), the way the series is filtered by signal 
detection to obtain a stylized series to produce forecasts, the size of the series, the magnitude of the 
errors (Armstrong & Fildes, 1995), parameters considered from the regular and the irregular 
adjustment (Findley, 2005) (Mc Donald-Johnson, et al., 2007) (Tashman, 2000), outlier detection and 
its typology (Pavía Miralles, et al., 2012), among others. 

After classifying forecast as good (1 = hit) or not (0 = fail), we can label each series to be introduced as a 
training example in the network model. A sensitive analysis is performed to assess the nature of the 
internal representations generated by the neural network to determine the importance or effect of each 
input variable on the output: the probability of produce an accurate forecast by the automatic tool. 

All results will be shown and at the conference. 
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