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ABSTRACT 

The paper analyses two types of complex structures containing distributed lag models: composed of a set of parallel or serially connected component distributed lag models. Each component model is associated with a certain stock being fed by an inflow and exhausted by an outflow, which is described by the distributed lag model with the rate of inflow acting as the independent variable. In order to facilitate the analysis, it has been assumed that the system of flows is leak-proof – no losses are assumed. It is shown that the level of each stock can also be expressed in terms of the distributed lag model, and that there is a strict relationship between these two types of the considered distributed lags: one describing the outflow and the other describing the level of the associated stock. Such an approach allows for the restricted variability of the lag distribution, which can be caused by the seasonal or systemic factors. Restrictions concerning variability of the lag distributions are twofold. The first one is related to the principle of mass conservation, which requires non-negative stock levels and the balance of the inflows and outflows in time. The second restriction is related to mathematical assumptions: coefficients of the lag structures change in time, however they are treated as scalars, and thus they are not affected by the lag operator. The latter provides a commutative property of products of the polynomial operators used for the determination of the resultant lag distribution; thus any sequence of given component distributed lag models produces the distributed lag model with the same lag distribution. Models of this kind can be used in the description of the logistic chains, propagation of shocks, price transmission, impact of changing preferences on the bank loans outstanding, cohort evolutions, etc. The analysis considers the impact of the structure complexity on both the lag distribution (attributed mostly to the deterministic part of the distributed lag model) and the chosen properties of the random term. It is shown that the coefficients of the resultant lag structure can be determined on the basis of the coefficients of the lag structures of the component distributed lag models. In the case of the sum of the distributed lag models, each lag coefficient of the resultant lag structure is a sum of the coefficients of the component lag structures associated with the same lagged independent variable. In the case of the serially connected distributed lag models the coefficients of the resulting lag structure are determined by the convolutions of succeeding lag polynomials associated with the corresponding lag structures. On the basis of the values of the coefficients of the resultant lag structure, long-term multipliers can be determined. Problems of the measurement of the lagging effect of the distributed lag models are also considered. Cases are indicated where it is necessary to account for the dynamics of the independent variable  in order to assess the lag properly.
1. Introduction

Distributed lags are a common tool in modeling dynamic processes, where a response to a certain stimulus is spread over time, and are frequently used in sciences and in particular in economics. In economic empirical analysis, distributed lag models were proposed by I. Fisher (1937), L. M. Koyck (1954) and further developed by many others. In most cases these models are based on the assumption of a constant lag distribution. Such an approach is relevant whenever the modeled process is not sufficiently recognized and/or an alternative hypothesis has not been justified on the basis of available data. However, more and more instances of distributed lag models with time-varying lag distribution can be met, Pesando (1972), Trivedi, Lee (1981), Otto (1985), Dahl, Kulaksizoglu (2004), Gadomski (2012), and others. It is necessary to  recognize the mechanism, which causes significant changes in the lag distribution not attributable solely to the impact of the random component, in order to use distributed lag models with the time-varying lag distribution. While the theory of the distributed lag models with constant lag distributions has been developed, as for example Almon (1965), Jorgensen (1966), Griliches (1967), Dhrymes (1981) (in econometrics, the emphasis is on the problem of estimation of such models), properties of the time-varying distributed lags have not been analyzed in comparable extent. 
Systems of flows analyzed with the use of the distributed lag models are a specific subclass, in which one can distinguish interconnected inventories/stocks and the inflows and outflows respectively feeding and exhausting, as well as connecting those stocks. For the purpose of this paper such systems will be called the systems of flows. Of particular interest are systems, in which the outflows from stocks can be described by the distributed lag models. This paper is focused on the analysis of the distributed lag models with the time-varying lag distributions applied in modeling the systems of flows. Examples of such systems can be found in economics (stocks of fixed assets, inflows of investment, outflows of decommissioned assets; inventories of raw materials fed by replenishment, inflow and exhausted by consumption, etc.), technical sciences, demography, hydrology etc. Admitting the importance of the stochastic aspect of the distribution lag models, in this paper we do not approach the problems of parameter estimation. 
In Section 2, basic terms and properties are introduced. In Section 3, a problem of duration of a lagged response is analyzed in terms of the mean age of outflowing units and the mean value of the distributed lag. Section 4 contains an analysis of complex lag structures composed of parallelly or/and serially linked distributed lag models. Section 4 presents final conclusions.
Some variables and coefficients used in the paper have one or two subscripts; in order to avoid ambiguity, a separating coma is applied whenever an expression within the subscript could cause confusion. 
2. Basic concepts
A basic element of the flow system consists of a stock Z being fed by the inflow X and exhausted by the outflow Y. 
The outflow is assumed to be the distributed lag model of the inflow:
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where:

xt 
– value of an independent variable representing inflow X in period t,

yt 
– value of an dependent variable representing outflow Y in period t,

vt i 
– coefficients of the lag structure 
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 given for the time-period t; i=0, 1, 2,…; which fulfill the following conditions:
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(2)
ɛt 
– random component; independently distributed with zero mean, 
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The above described random component is specified in the way commonly used in the analysis of the distributed lags. However, it will be shown later that the conventional assumptions concerning the random component are not strict enough in the analysis of the lags in the systems of flows. 

In the equation (1) two parts are distinguished: first, 
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, represents the random part of the relationship (1). Assumptions concerning the random component are the standard ones. 
The level of stock Z at the end of the period t is described by the following stock equation:
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(3) 

where zt stands for the level of stock at the end of period t, xt and yt, are defined above. 
In order to simplify the presentation, it is assumed that the system is leak-proof, meaning that there are no external gains or losses. This assumption can be relaxed whenever external influence can be presented in the form of an outflow described by the distributed lag model. 
Finite by assumption, the sum 
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is called the long-term multiplier. 
Equation (1) can be expressed in the following form:


[image: image11.wmf],

 

x

w

a

y

t

0

i

i

-

t

i

t

t

t

e

+

å

=

¥

=






(4)
where coefficients 
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, i=0, 1, 2,…; are obtained by the normalization of the coefficients of the lag distribution 
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Coefficients wt i, i=0, 1, 2,…; constitute the lag distribution 
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. It will be assumed throughout this paper that any considered lag distributions have finite mean value 
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It should be noted that the above parameters describe the lag distribution, which belongs to the deterministic part of the distributed lag model (1). This explains the difference between the notation of the expected value of the random term and the mean value of the lag distribution, as well as a variance of the random term and a variance of the lag distribution.
The independent variable assumes non-negative values and the dependent variable is also non-negative. These assumptions restrict our investigation to the systems with the one-way flows. Moreover, in the approach presented here, the law of mass preservation is obeyed. 

The interpretation of the equation (1) is as follows. Outflow yt in the period t consists of: vt0 part of inflow xt from the same period t, vt 1 part of inflow xt-1 from the period t-1, vt 2 part of inflow xt-2 from the period t-2, etc. In order to ascertain the level of stock to be non-negative, zt ≥ 0, or 
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which states, according to the principle of mass conservation, that the sum of parts of the inflow xt in the period t leaving the stock in the periods t, t+1, t+2,…; cannot exceed the amount xt of inflow from the period t. Note that the case of strict inequality in the above constraint determines that some residual part of the inflow xt may remain within the stock. 
Note also that in all time periods, the following relation holds true:
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which means that the outflow of the quantity, which got into the stock in the period t-i+1 cannot exceed the amount of that quantity residing in that stock in the time period t.
A special case:
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determines that any inflow into the stock must leave it within the infinite (or finite) time-horizon and has far reaching consequences.
The relationship (4) shows that the value of the dependent variable is determined by three following factors: (i) the present and past values of the independent variable, (ii) random variable ɛt and (iii) a mechanism forming the lag structure of the outflow. 
The variability of the lag structure can be caused by many factors, such as, for example, systemic or cyclical. At this stage no additional assumptions concerning this variability are needed. 
Quite often in the analysis of the systems of flows a problem emerges of measuring the time spent by units within the stock. This issue is addressed later, however for now it will be assumed that the units which flowed into the stock in the current period are of the age 0, those from the preceding period of the age 1, from two periods back of the age 2, etc. Using this convention one can interpret the dependent variable, an outflow, as a flow consisting of (vt 0 xt) part of inflow from the same period xt being 0 period old, (vt 1 xt-1) part of inflow from the previous period xt-1 being 1 period old, etc. 
Solving equations (3) by recursive substitution of equation (1) into the equation (3) k times, k=0, 1, 2, 3,..; results in the following relationship:
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and finally
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(8)

because for all j, j = 1, 2, 3,..; one gets
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and 
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Further considerations will be based on the condition stating that with i→∞, both vt,i and xt-i converge to 0, so that assuming that z-∞=0, we have
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The above conditions justify the following formula:
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(9)

where
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The above property shows that the assumptions, which are conventionally adopted in the analysis of the distributed lags, appear to be cumbersome in the narrower field of the analysis of lags in the systems of flows. In tackling this problem one can choose one of two approaches. 
In the first approach one would ignore the stochastic aspects of the lag mechanism particularly when the estimation problems are not being considered. The second approach would be based on the assumption of a finite history, meaning that the history of the system begins in a certain time-period t0, so that for all t< t0 , all xt = t = zt =0, providing a finite variance. In the further considerations, the second approach will be adopted.
Note that:
1-vt 0,0 is a part of inflow xt from the period t, remaining in the stock Z at the end of period t,

1-vt-1, 0 -vt, 1, is a part of inflow xt-1 from the period t-1, remaining in the stock Z at the end of period t; 

1-vt-2, 0 -vt-1, 1 -vt, 2, is a part of inflow xt-2 from the period t-2, remaining in the stock Z at the end of period t; etc.

Having non-negative values of the stock zt in mind, the values of the terms from the equation (9) are also non-negative, because, respecting the principle of mass conservation, at each period the following condition holds true:
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which states that in the period t+1 the part of the outflow yt+1 derived from the inflow xt-i from the period t-i cannot exceed the part of the inflow xt-i from the period t-i remaining in the stock at the end of period t (or at the beginning of the period t+1).

Consequently, the stock level zt at the end of the period t, equation (9), can be expressed in the alternative way:
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(10)

or
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where:
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and 
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, i= 0, 1, 2, 3,…; denote the amount of inflow from the period t-i remaining within the stock at the end of period t. 

Equations (10) and (11) show that the level of stock at the end of period t can be also expressed as a distributed lag model with lag coefficients st i, i= 0, 1, 2, 3,…; equation (12a).
Note also that
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i = 0, 1, 2, 3,…  ;
which means that regardless of the shape of the lag structure Vt of the outflow, coefficients st i, i= 0, 1, 2, 3,…; of the stock lag structure (10) form a monotonously diminishing sequence. In the case of the stock level, the impact of history is always a non-increasing function of the age of units residing within the stock.
Equation (11) reveals the time-structure of the stock; each variable zt i, i= 0, 1, 2, …; represents amount of inflow xt-i from the period t-i remaining within the stock at the end of period t. This interpretation is used further in Section 3.
Consequences of equation (9) can be explained using as a reference the distributed lag model with constant lag distribution and the long term multiplier equal 1 (other value would lead to infinite increase, when a<1, or decrease, when a>1, of the stock Z). Assuming constant lag structure V of the outflow (the time index t can be dropped in this case), equation (9) can be presented in a simpler form (having in mind that in this very case coefficients are normalized wi=vi, i=0, 1, 2,   :
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An important property of equation (13) is that it can also be expressed in the form:
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(14)

where M(W) is the mean value of the lag distribution W and the lag coefficients qi, i= 0, 1, 2,…; are defined by the following formula:
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(15)

constituting lag distribution 
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 of the stock, because the coefficients qi satisfy the normalization conditions:
qi ≥ 0, i= 0, 1, 2, …;
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Proving relationship (14) is equivalent to proving that 
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Proof. On the basis of (9) successive coefficients si, i= 0, 1, 2, …; can be expressed by following equations:
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Summing coefficients si, i= 0, 1, 2, …; is equivalent to summing the right-hand sides of the above equations, which results in the sum of the following terms: one w1, two w2, three w3, etc, or:
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what was to be shown.
Equation (14) is essential as it shows that in the steady state, when for all t xt= x*, in the case of the constant normalized lag coefficients, the following relation of the inflow, stock and the mean value of the lag distribution holds true:
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Returning to the time-varying lag coefficients we can express equation (10) in the following form:
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where 
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Due to the relationships (16), (17) and (18), it should be noted that the lag coefficients qt i, qti ≥ 0, i= 0, 1, 2, …; of the distributed lag model (16) are functions of the past lag structures Vt, Vt-1, Vt-2,…; and constitute lag distribution Qt of the stock. 
An analysis of a relationship between the outflow and stock lag distributions will be limited to the models with the time-constant lag distribution. 
Mean value of the lag distribution of stock Q in model (16) is given by the following formula:
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Proof of the above is as follows. On the basis of the definition we have:
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Taking into account that
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the above equation can be rewritten in the following form:
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Knowing that:
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and
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by rearranging terms one can arrive at:
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what was to be shown.

Note that in the case of the simplest single-point lag distribution with only τ-th non-zero coefficient vτ ≠0 equation (13) may be reduced to the following one: 
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because in this case the variance equals zero.
The above considerations are illustrated by the following examples.

Example 1. Assume the following model:

zt= zt-1 + xt - yt,

yt= ( xt + zt-1 );
which is equivalent to the distributed lag model of the outflow yt with regard to the inflow xt with a constant lag distribution of the outflow, with the lag coefficients given in the following formula:

wi=(1-)i, 
i= 0, 1, 2, 3,..;
(of the Koyck type), ϵ(0,1) and the long-term multiplier equal 1. This equivalence is easily proved by recursive substitution:
yt=(xt+zt-1)=xt+zt-1=xt+(1-)xt-1+(1-)zt-2=


= 
[image: image65.wmf](

)

(

)

å

å

=

+

-

-

=

-

+

-

-

+

-

-

n

0

i

1

i

n

1

t

n

0

i

i

t

1

i

1

z

1

x

1

1

l

l

l

l

l

l

;
and finally:
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Note that the second of the two above presented equations defining the model fulfills the mass conservation principle.

As a particular case this model is specific because its lag distribution of the stock is identical to the lag distribution of the outflow. 
Proof of the above property is based on expression:
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 i= 0, 1, 2, 3,.. .
The sum of coefficients of the lag structure of the stock si, i= 0, 1, 2, 3,..; equals the mean value M(W) of the lag distribution W:
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so that:
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It should be emphasized that the equality of both the outflow and stock lag distributions illustrated in Example 1 is exceptional. In a general case, lag distributions of the outflow and stock are different. An example is presented below.
Example 2. Assume a uniform lag distribution of the outflow such that the coefficients wi=1/(n+1) for i=0, 1, 2,..,n; and wi=0 for i>n, where n>0 is a natural finite number and the mean value of the lag distribution of the outflow M(W)=n/2. 
In this example, one gets uniformly decreasing coefficients of the linear lag structure of the stock vi=1-(i+1)/(n+1)=(n-i)/(n+1) for i=0, 1, 2,.., n; and vi=0 for i≥n; and the mean value of the lag distribution of the stock M(Q)=(n-1)/3. Note that the lag structure of the stock is Irving Fisher’s linear distributed lag model, Fisher (1937). Therefore in this example both the inflow and stock lag distributions and respective mean values are unequal. 
Example 3. Assume the following time-varying model:

zt= zt-1 + xt - yt,

yt= t( xt + zt-1 );
which differs from the one presented in Example 1 in the variability of the coefficient t, tϵ(0,1). 
Solving the above model by recursive substitution gives the following results:
· coefficients of the outflow lag distribution:
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, i=0, 1, 2,..;
· coefficients of the stock lag distribution:


[image: image71.wmf](

)

Õ

=

-

-

=

i

0

j

j

t

i

t

1

s

l

,
i=0, 1, 2,.. .
In this example, it is worth noting that the principle of the mass conservation is respected (meeting for all t the condition: 0≤ yt ≤ zt-1 + xt) and the coefficients of the outflow lag structure do not necessarily sum to one. 
3. Measures of lags in the flow systems 
Measuring the scope of lags is straightforward only in the case of a simple one-point lag of a definite number of periods (single point lag distribution). In the general case of the distributed lags, the commonly used measures of duration of the process of transferring impact of the change in the independent variable on the dependent variable are the mean value M(Wt) and (seldom used) median η(Wt) of the lag distribution. However, as it was shown in Gadomski (2011), these measures do not account for the dynamics of the independent variable. This deficiency can be, to a certain extent, corrected by using the concept of the mean (and/or median) of the so-called resultant lag distribution, which was proposed in Gadomski (2011) in order to capture separate impacts of both the time-varying lag distribution and the behavior of the independent variable. 
The shares ut i, i= 0, 1, 2,...  ; and the mean M(Ut) of the resultant lag distribution Ut of the outflow are defined by the following expressions:
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The coefficients ut i, i= 0, 1, 2,...  ; equation (20), which constitute the resultant lag distribution of the outflow Ut are interpreted as shares of the units of inflow from the time-periods t-i, i= 0, 1, 2,...; in the outflow in time-period t. The mean of the resultant lag distribution M(Ut) of the outflow, equation (13), is the average age of units of the outflow in the period t. 
Note that in the context of the systems of flows, the mean value M(Wt) of the lag distribution Wt of the outflow can be interpreted explicitly as the mean time the unit of outflow spent in the stock being in the steady state, or as the mean age of units flowing out of stock in the steady state. Whenever the system is beyond the steady state, these interpretations cease to be relevant, however the above interpretation of the mean M(Ut) of the resultant lag distribution Ut of the outflow remains explicitly valid. Note that in the steady state both measures, the mean value M(Wt) of the lag distribution Wt and the mean M(Ut) of the resultant lag distribution Ut are equal.
A similar path of reasoning applied to the equation (10) enables an analysis of the mean age of units residing within the stock. In this context one can interpret the mean value M(Qt) of the lag distribution Qt of the stock as the average age of units residing in the stock in the steady state, beyond which the adequate measure is the mean M(Pt) of the resultant lag distribution of stock Pt defined as follows:
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4. Complex structures composed of the distributed lag models

As far as the properties of the distributed lags are concerned, of particular importance is the problem their structure.  In this paper, complex distributed lag models are these models which describe flows through the complex systems consisting of components described by the distributed lag models. Presented results are based on an earlier paper by Gadomski (2011). The analysis is restricted to two types of the complex systems; those that are the result of the sum of the distributed lag models (parallel connection), and those that consist of the serially connected distributed lag models. It can be shown that all paths within such systems can be presented using the first or second type of the complex system. Such systems of flows are common in the logistics as well as production systems.
Sum of n distributed lag models

The sum of n distributed lag models is defined in the following way:  
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where:

n 
- number of summed models, n < ∞
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- dependent variables, j= 1, 2,..,n; having the form:
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It can be easily shown that the sum (24) is also a distributed lag model with regard to the independent variable xt :
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where:
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On the basis of the assumption of the independence of the random terms
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If each of the n summed distributed lag models has lag distribution 
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The above relationship is obtained from the definition:

[image: image96.wmf]å

=

å

å

å

=

å

å

å

å

=

å

å

å

å

=

=

=

=

¥

=

=

¥

=

=

¥

=

¥

=

=

¥

=

=

n

1

j

)

j

(

t

t

)

j

(

t

n

1

j

)

j

(

t

n

1

j

1

i

)

j

(

i

t

)

j

(

t

n

1

j

0

i

)

j

(

i

t

n

1

j

1

i

)

j

(

i

t

)

j

(

t

0

i

n

1

j

)

j

(

i

t

1

i

n

1

j

)

j

(

i

t

t

)

W

(

M

a

a

a

iw

a

v

w

ia

v

v

i

)

W

(

M

.

The variance of the lag distribution of the sum of distributed lag models is given by the following formula:
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Proof of the relationship (26) makes use of the formula:
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On this basis one can write:
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Note that on the basis of the Cauchy-Schwarz inequality, the difference within the curly bracket is always non-negative so that the variance of the sum is greater than the weighted mean of individual variances. However, in the case when all lag distributions have the same mean value, the variance of the sum of lag distributions equals the weighted sum of individual variances. 
Note that the random component t is a simple sum of random components of individual models. In the case of the superposition of the distributed lag models, this is much more complicated. As our interest is focused on the deterministic part, in further analysis the random component will be omitted, however this aspect is worth consideration. 
Note also that any distributed lag model having a general form of (1) is in fact the sum of simple lags of the form:
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Serial connection of n distributed lag models

Superposition of the distributed lag models occurs whenever the independent variable in the distributed lag model is the dependent variable of another distributed lag model. Assume 
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(27)

In order to facilitate the manipulation of the formula, the above models can be presented in the form of the polynomial operators:
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 (28)
where 

L 
- shift operator having the following properties:

Lk xt = xt - k ;


k= …-2, -1, 0, 1, 2,…;

Lk Ll=Lk+l;



k, l= …-2, -1, 0, 1, 2,…;


Lk L-k=Lk-k = L0=1;

k = …-2, -1, 0, 1, 2,…;

L0 xt =xt  








Lk cxt = cLk xt = c1 xt-k.
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- polynomial operator of the form:
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Although the lag coefficients depend on time, they will be considered to be scalars. At this stage a remark concerning the nature of the time dependence of the lag structure is necessary. Note that in time t all lag coefficients 
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, j=1,…,n, of the j-th component model are treated as scalar numbers and not as the time dependent variables. That assumption grants the commutativity property of the product of any two polynomial operators:
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which otherwise would not be fulfilled. Under this assumption succession of the component distributed lag models does not affect the properties of the resultant distributed lag model.
Assuming that each lag structure 
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; j= 1, 2, .. ; has the lag distribution and respective mean value of the lag distribution, a consecutive substitution of corresponding terms in (28) results in the following expression:
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this is
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or
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where 
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, k=1, 2, … , n;
is the polynomial operator obtained as a product of the polynomial operators for each component distributed lag model, and 
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 is the long-term multiplier of the serial connection of the distributed lag models:
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The equation (29) can be rewritten in more compact form:


[image: image115.wmf]]

[

]

[

)

(

)

(

n

t

t

n

t

n

x

L

V

y

t

e

+

=

,




(30)

where:
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Note that 
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In the following analysis we will use the generating function 
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The following properties of this function will be used:
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Note that 
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 is also a lag distribution; its coefficients are non-negative and they sum to 1, as a consequence of the fact that the generating function built on the lag distribution 
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Mean value M(Wt) of the lag distribution Wt is described by the following expression:
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(32)

The proof of equation (32) is based on the formula presented above, which relats the first derivative of the generating function in point θ=1 and the differential of the product of the generating functions:
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Variance 
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Proof. Because we have
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Accounting for the above one arrives at the following:
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what was to be shown.
Note that the random component 
[image: image136.wmf]]

n

[

t

e

 has the following form


[image: image137.wmf])

n

(

i

t

n

1

i

]

i

[

t

]

n

[

t

]

n

[

t

)

L

(

V

)

L

(

V

-

=

å

=

e

e

.

The expected value of the random term 
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Variance 
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4. Conclusions
Distributed lag models of the flow systems are a subclass of the distributed lag models and are often applied in modeling. The variability of the lag structure makes them versatile and applicable in  demography, finance etc. These models are characterized by a certain capacity; this is a stock of what entered the process of delay and has not reappeared in the outflow. It was shown that the amount remaining in the stock also has the properties of the distributed lag with the parameters of the lag distribution derived in explicit formulae. Distributed lag models of the flow systems are a narrower class of the general distributed lag models and their specific features consist in obeying the principle of mass conservation. 
Complex systems of flows consisting of the components, which are the distributed lag models, share many properties and terms of the general distributed lag models, such as the mean value and variance of the parallel or serially connected distributed lag models. 
The mean value of the lag distribution of the distributed lag model composed as a set of parallel-connected distributed lag models is equal to the weighted average of the mean values of the lag distributions of the component distributed lag models. The variance of the lag distribution of the distributed lag model composed as the sum (parallel connection) of the distributed lag models is no less than the sum of the variances of the lag distributions of the component distributed lag models. An exception to this rule occurs if all mean values of the component lag distributions are equal; in such a case the resulting variance is equal to the sum of the variances of the component lag distributions. The resulting random term has expected value equal to zero and its variance is a sum of variances of the component lag distributions.

The mean value of the lag distribution of the distributed lag model composed of the serially connected distributed lag models is equal to the sum of the mean values of the component lag distributions. The variance of serially connected distributed lag models is equal to the sum of the variances of the component lag distributions. The resulting random term has expected value equal to zero and its variance equals the weighted sum of the variances of the component lag distributions with the weight coefficients being the products of participating long-term multipliers.

The analysis confirmed the relevance of the concept of the so called resultant distribution and its parameters, particularly in application to the systems of flows, where they have useful and meaningful interpretation. The mean value of the outflow lag distribution represents the mean age of the units of the outflow, while the mean value of the stock lag distribution represents the mean age of the units remaining within the stock.
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